Feeds:
Posts
Comments

Archive for the ‘Arboriculture’ Category

I just got a rough cut today of the video, shot last summer, of the moving of a very large (about 14″ caliper, 30′ height) London Plane Tree.  It’s taken a while to edit several hours of footage down to a half an hour, but it’s about done, and in the next few weeks I hope to have added commentary.  This video is from the project run by Matt Foti’s crew, aided by Mike Furgal, and it showcases the techniques used in air-tool transplanting.  I hope to be able to preview the rough cut at New England Grows, and have the final version completed by the end of February; if there’s enough interest in the arborist community I’ll sell copies.  Stay tuned.

The first of five 12-14' caliper London Plane trees being excavated with air tools and transplanted bare root in August 2009.

Read Full Post »

Last week I was lucky enough to see the loading, unloading, and half the planting of an 18″ caliper European beech tree.  The tree had been air-tool excavated, and was being moved over state highways to its new home at the residence of a former client of mine.  Here’s what the tree and its immense root mass looked like:

Giant root mass, 30 feet across, preserved by air excavation. Note the trunk's heavy padding, and pigtailing of the roots.

So that's what a beech's roots look like. This tree had been transplanted with a tree spade about 20 years ago, and it was possible to look under the root plate and see where severed roots had sprouted out.

The 30-foot high tree being lowered onto a specially rigged trailer for transport.

After the tree had been loaded onto the trailer, its roots were covered with burlap and sprayed down for the ride to its new home.

This post is just a teaser; next spring after the tree leafs out I’ll write a post on the  whole air-tool transplant operation, and give all the who’s, what’s, why’s, hows, wheres, and whens.  Stay tuned.

Read Full Post »

To continue yesterday’s post on the bare-root transplanting of a Norway spruce at the Perkins School for the Blind in Watertown, MA:

The crew uses a heavy canvas strap wrapped securely (more than once) around the trunk, and pads the Bobcat fork bracket. This tree's flat back meant it could be pulled securely up onto the forks without tying up branches; other trees would need to be tied up for easier spading and transport. Here, the forks are poised to push under the root ball, just below the wire basket.

Rolando prunes thin fibrous roots from under the basket, to release the root ball from the ground. Most of the root mass has already been blown out.

Spruce on the move. With almost all the soil blown off the root mass, it is light enough for the Bobcat to carry the tree easily across campus. Canvas straps secure the tree to the Bobcat; Rolando rides along just in case.

Closeup of the root mass. Virtually all of the roots on this tree were quite thin, and they made a dense mat that extended about nine feet out from the tree's trunk on several sides.

Mynor had dug out the hole with the Bobcat while Sonia and Rolando blew out the soil from around the tree. This site, next to a busy campus parking lot, challenged the crew to place the tree carefully. Cars were parked just to the right of the orange barrier in this photo, and other relocated trees ringed the dish on two other sides, so maneuvering to get the tree in place was a bit tricky. It's relatively easy to spin at least a small B&B tree to the right orientation; turning an air-spaded tree requires a bit more forethought. In this situation, a bit of three-dimensional visualization was necessary to be sure that the flat side faced away from the parking lot.

Sonia and Rolando used a rake handle and tape measure to determine the root mass's depth before adjusting soil depth in the new hole.

Additional native soil is added and compacted to make a pad under the trunk. When in doubt, it's better to place the tree slightly higher in its new location than to risk it settling deeper once it has been backfilled and watered in; tamping the soil firmly under and around the roots right at the tree's base helps insure both that the soil won't subside and that air pockets are eliminated.

Rolando guides Mynor in setting the tree in the right spot. Good communication is key through this entire project, and these guys were excellent in coordinating their work with each other.

Rolando and Santo shovel native soil under the rolled-up root mat, to secure and level the tree before its roots get spread out.

Sonia and Rolando spread soil under and over the roots as they unroll them from the bundle. Note that they are using soil excavated from the site, with no amendments. Bare-root transplanting eliminates the difficulties associated with moisture transfer between two types of soil (root ball soil and soil outside the root ball), which makes establishment in its new site less stressful for the tree.

With backfilling complete, the crew builds a berm.

With the berm in place, Sonia waters the backfill thoroughly. Some crews shovel in the backfill and water simultaneously, "mudding in" the tree for extra stability and the complete elimination of air pockets. Mulch will go on this new planting next, and then more water. Note that you can see the root flare, now that the tree has been excavated from its original root ball and planted at the proper depth.

Project site:  The Perkins School for the Blind, Watertown, MA

Project manager:  Sonia Baerhuk

Project crew:  Rolando Ortega, Mynor Tobar, Santo Masciari

Read Full Post »

The Massachusetts Arborists Assocation bare-root workshops — one in August 2008, and one in August 2009 — have been spreading word through the Commonwealth about the benefits of air-tool tree transplanting, and word is travelling throughout Massachusetts horticulture circles now.

A couple of weeks ago I was chatting with Kristen DeSouza, one of the horticulturists at the New England Wild Flower Society‘s Garden In The Woods, and she mentioned that she had passed my name along to Sonia Baerhuk, who tends the grounds at Watertown’s Perkins School for the Blind.  Kristen told me that Sonia and her crew have been using air tools to  transplant trees on the school’s grounds for the last several months, and suggested that I get in touch with her.

And so last Thursday, a couple of emails and a phone call later, I pulled in to the visitor’s parking area at the Perkins School.  Sonia soon arrived in one of the grounds department’s Gators.  She very kindly showed me around the campus, explaining that a new and large building project had required the removal of dozens of large trees.

It’s a scenario typical of many institutional sites:  a program outgrows its home, the phasing of a master plan leads to a shifting of facilities or the construction of a new building, and the vegetation on site must either be removed or relocated.  Having worked at Perkins for several years, Sonia was no stranger to this course, of events, but still, she had been dismayed to see so many large specimen trees being cut and fed into the chipper.

Though the grounds crew does most of its own tree work, over the years they have called in arborists for their expertise, and Sonia knew and trusted Matt Foti’s expertise.  Matt had told her about the air-tool method, and on the strength of his recommendation, she signed up for the MAA’s Elm Bank bare-root workshop this past August.  At it, she absorbed as much information as possible.  She came away from the day’s event convinced that air-tool excavation and transplant was the best way for her crew to relocate any salvageable campus trees.

So Sonia and her boss Rich Falzone equipped the crew with an Air Spade and an Air Knife, coveralls, eye protection, ear protection, and respirators, and began to direct the relocation of trees.

To date, the Perkins crew — Sonia Baerhuk, Rolando Ortega, Mynor Tobar, and Santo Masciari — has moved several 15-20′ Norway spruce, a fastigiate white pine, a Forest Pansy redbud, several apples, and a beautifully structured 25-30′ tall Halesia.

On the day I visited, they were ready to move another Norway spruce from a location that is slated to become a pondside patio.  Its new home would be a lawn next to a parking lot to which they had already moved a number of evergreens.  The new planting is beginning to screen the lot from adjacent buildings; over time, this grove will shade the parking lot and the walkway near it.

Sonia Baerhuk marking the new home of a 15' Norway spruce to be relocated.

Fifteen-foot Norway spruce in its original location next to the campus pond. The crew discovered that the Norway's roots were interwoven with roots from other nearby trees. This tree was flat on the side facing the fence.

Currently, the grounds crew rents compressors. These two generated air for an Air Knife and an Air Spade. Note the plywood barriers set up to prevent soil overspray onto the lawn. In this project, the crew did not dig a trench to hold blown-out soil; they simply started blowing soil out from the trunk and followed the roots out to and beyond the dripline.

Sonia and Rolando, kitted out in their PSE: coveralls, gloves, hats and hoods, ear protection, eye protection, and respirators.

Blowing soil off the roots took about three hours. Sonia likes to divide the root mass diameter into quadrants and work systematically, while Rolando prefers to work all around the tree; when they work in tandem they use whichever method fits the site conditions best.

Edges of the original B&B root ball are barely visible here; it was roughly 24-30" across. Rolando and Sonia discovered the wire basket still around it. They also discovered that the root flare sat several inches down in the original root ball.

The spruce was anchored with a thick mat of fibrous roots; the crew found virtually no roots larger than 1/2" in diameter. Here, they are pruning root ends under the eighteen-inch deep mat.

Still pruning the mat, and rolling it up toward the trunk to blow soil out from under the tree.

The root mat rolled up and bound in burlap for further blowing-out and moving.

Project site:  The Perkins School for the Blind, Watertown, MA

Project manager:  Sonia Baerhuk

Project crew:  Rolando Ortega, Mynor Tobar, Santo Masciari

Read Full Post »

Mike Furgal sent me photos of an 8″ caliper Weeping White Pine  that he moved a couple of weeks ago, remarking that this tree, though relatively small, was the most challenging tree he’s moved bare-root.

The tree was situated in a small berm next to a house and a driveway, and shared the bed with a 7′ Hinoki Cypress and an 8′ Blue Holly.  Mike blew soil out of the entire bed to move all three plants, whose roots were interwoven.

Pine roots running toward the house and drive extended no more than three feet. Roots running under the lawn told a different story; the two main roots that Mike found were 16-18 feet in length; they had plenty of moisture available and plenty of rooting room to grow.

Mike began work on the bed by blowing soil at the tree’s dripline and at its root collar, to assess where the roots were.  He found that they ran along the edge of the bed until they hit the house; from that point they grew out into the lawn.

Here are his photos:

beginning location 2

Rooting space is constrained by the berm's proximity to the house and the driveway.

begining location 3

Ample lawn space gives plenty of rooting opportunity in other directions.

beginning location 1

Lots of roots here -- note how they run along what had been the bed edge, and extend back toward the house. Once they hit the house, they then ran out into the lawn.

beforemove

Here's what the excavated bed looked like, with Hinoki Cypress, Blue Holly, and Weeping White Pine roots woven together.

veron pine diggiing

Tremendous root extension can be kept with air-tool excavating, and while not all fine roots remain, a significant number of them do.

veron white pine digging 2

The Pine ready for its move. These lawn-side roots are sixteen to eighteen feet long. Compare that root length to the accepted standard size of a B&B root ball, which allows ten inches of root-mass diameter for one inch of trunk caliper. For an apples to apples comparison, if we include the three feet of root on the tree's other side, this tree has 19 to 21 feet of root extension, as opposed to the 6-foot, 8-inch root mass diameter you would see on a B&B specimen.

veron white pine digging 3

Moving the excavated pine was the trickiest part. Mike and his helper used a Bobcat and a Dingo -- tricky to coordinate both machines at once.

veron moving 3

Closeup of the two monster roots extending away from the house and drive.

veron moving 1

Anyone else reminded of a bride with a really long train? One major difference: a bride doesn't require this kind of machinery to move around.

veron moving 2

The pine moving to its new home on the other side of the house.

I’ll post photos of the tree in its new location shortly.

Arborist:  Mike Furgal, Furgal Tree and Landscape, Northborough, MA

Read Full Post »

Posted on Taking Place on July 1, 2009:

A few posts back I mentioned my February 2009 article in Lawn and Landscape Magazine on bare-root tree transplanting using an air spade. That article was preceded by my December 1, 2008 article in American Nurseryman, in which news of the technique debuted. Both articles describe the workshop at which several trees — a Juniperus virginiana, a couple of Acer palmatum, a couple of Betula pendula ‘Gracilis’, among others — were spaded and moved. Both articles outline how to carry out the process, though the Lawn and Landscape article is a bit more explicit. And they compare the merits of different methods of transplanting (tree spaded, ball & burlap, and air spade), including how cost, speed of operation, and effect on tree health may vary.

The beauty of using an air spade to transplant specimen trees is that so much root mass can be preserved and moved with the tree. The following photos of a dwarf Japanese maple (Acer palmatum dissectum), lent by Matt Foti, illustrate just how effective at saving roots this technique is.

Matt and his crews are using an air spade routinely now in transplanting work, because it preserves the tree’s resources so well, minimizing transplant shock and easing re-establishment. They moved this tree in early September of 2008. Take a look:

Acer palmatum dissectum awaiting its move.  Soil under the tree has been lightly spaded to check surface roots.

Acer palmatum dissectum awaiting its move. Soil under the tree has been lightly spaded to check surface roots.

Same tree, roots now exposed by the air spade.  Note how far beyond the tree's dripline these roots extend.

Same tree, roots now exposed by the air spade. Note how far beyond the tree's dripline these roots extend.

Tree being lifted up for the move.  The crew has wrapped its trunk and main limbs, to avoid injury; guy lines insure that it won't tip in transit.

Tree being lifted up for the move. The crew has wrapped its trunk and main limbs, to avoid injury; guy lines insure that it won't tip in transit.

Wrapping thoroughly during this kind of move lessens the chance of bark injury.

Wrapping thoroughly during this kind of move lessens the chance of bark injury.

Tree in its new location, backfilled and awaiting thorough watering.  No staking is necessary, as most of the root plate has been preserved and will continue to support the tree in its new home.

Tree in its new location, backfilled and awaiting thorough watering. No staking is necessary, as most of the root plate has been preserved and will continue to support the tree in its new home.

Read Full Post »

In the fall of 2008 Carl Cathcart persuaded Cavicchio’s Greenhouses to wash the roots on a stressed B&B Quercus rubra (Red Oak), and to plant it in a spot where it might be able to settle in.  Carl sent me photos of the root-washing process, which I posted on Taking Place last summer.  He and I then drove to Sudbury to see the tree, and to check out the three Red Oaks in similar condition that Cavicchio’s had planted conventionally, to see how they would progress in relation to the root-washed oak.

Photos of all the planted-out trees are on Taking Place, and because there are so many of them I’m simply posting the links to those posts here.  To see the photos and read about the root-washing experiment, click here first, and then click here.

The summary:  in mid-July, the bare-rooted tree looked best of all four trees.  It had some dead wood, but nothing that hadn’t been on the tree the previous autumn, and it had good foliage color and density, if the foliage itself was a bit small.  By comparison, the other three trees looked as if they were struggling: each tree had sprouted out new shoots along its trunk, often a sign of a tree in decline; foliage was small, and there was lots of deadwood in each tree.  It’s not a scientifically rigorous experiment, but one worth following over the next few years, to see how the trees progress.

Leaning into the root ball.  Lower water pressure may be a bit easier for those tiny feeder roots, but high pressure makes getting the hard clay soil off a faster process.  It's not clear yet how feeder root regrowth is affected by this kind of treatment, whether the pressure comes from air or water.  Early reactions seem promising, but it may be several years before a re-examination of the roots shows how risks and benefits balance..

Leaning into the root ball. Lower water pressure may be a bit easier for those tiny feeder roots, but high pressure makes getting the hard clay soil off a faster process. It's not clear yet how feeder root regrowth is affected by this kind of treatment, whether the pressure comes from air or water. Early reactions seem promising, but it may be several years before a re-examination of the roots shows how risks and benefits balance..

Read Full Post »

As you may know, this blog started as a series of posts on our other blog, Taking Place.  I branched it off that blog to avoid unbalancing the whole endeavor, and began posting on woody plant issues here.  I am currently working on copying older posts from Taking Place over to this blog as well (they’ll remain at Taking Place, too, as they are important there) — but it’s taking me a while.

So — if you want to read older posts on bare-root transplanting (root-washing and air-tool excavation), or on woody plants in design and woody plant management, you’ll be able to read current (from August onward) posts here, but will have to wait a bit for the older ones to arrive on this site.  If you just can’t wait, though, you can see all my pre-Taking Place In The Trees woody plants posts by clicking on the highlighted name — Taking Place — in the first paragraph.  That blog will then pop up.

Once that happens, scroll down and click on ‘Plants’ in the Categories list to the right of the page; doing so will make the list of tree and shrub posts pop up.  Scan through the list, and click on whatever title interests you to bring up the whole post, including some excellent photos.

And if you like what you see and read, take a look at the rest of the Taking Place site — there are some dandy photos and lots of observations on landscape architecture, design, and how we live in the green world.

Cute little dwarf liquidambar, freed from its container and soil washed away with the hose, ready to have its circling roots unwound, spread radially (as best as possible), and planted.

Cute little 'Gumball' dwarf Liquidambar, freed from its container and soil washed away with the hose, ready to have its circling roots unwound, spread radially (as best as possible), and planted.

Read Full Post »

In the year since I’ve been writing about bare-root transplanting and air-tool use, I’ve had the great good fortune to be able to ask questions of the real experts, the arborists who are doing this work and promoting it throughout Massachusetts and the US.  Three in particular have been especially helpful:

Mike Furgal

Mike Furgal

Mike Furgal, the original developer of the air-tool bare-root transplant method, has patiently reviewed my articles and given thoughtful and well-considered answers to all my questions.  He has a tremendous amount of knowledge about trees and transplanting, and he is extremely generous in sharing it.

Matt Foti

Matt Foti

Matt Foti, who hosted the first MAA workshop on air-tool bare-root transplanting (given by Mike and Matt) at his nursery at Nonset Farm, has taken the time to discuss a wide range of tree-related issues with me, and to provide clarifications to help make this information as up-to-the-minute and accurate as possible.  He has been the catalyst to get word of bare-root work out to the MAA and beyond, and has put energy and dedication into practicing, experimenting, and teaching.  Another generous guy.

Carl Cathcart

Carl Cathcart

Carl Cathcart, Consulting Arborist, has provided encouragement and still more information to me from the day we met at the Nonset Farm workshop.  He alerted me to the Cavicchio’s root-washing experiment, he talks up my writing to other arborists, and his encouragement is what got me writing about this stuff in the first place.

In July, Matt and Mike transplanted a number of very large trees for a project in Wellesley, MA.  They (and the homeowner, contractor, and landscape architect) kindly allowed me and a colleague to videotape the moving of two forty-foot high London Plane trees.  Editing of over six hours of videotape is underway now, and I’m hopeful that I’ll have a decent film this fall that Matt and Mike can do some voiceover comments on (not possible on site — air-tools are incredibly loud!).    When we’re done, it should give a fairly comprehensive look at how this method works for transplanting significant trees.  (And I bet Carl’s going to talk it up…)

For all these reasons, I offer my sincerest thanks to Mike, Matt, and Carl.  They are models of generosity, and I couldn’t be more grateful.

Read Full Post »

Air spade tree transplanting.  Warning:  Long post, tons of photos.

Probably the biggest draw of the Elm Bank workshop on September 10, 2009, was Mike Furgal’s moving of a 6″ caliper elm hybrid.  Mike first developed the method of air-tool bare-root transplanting in 2004, and has been working on it since, moving ornamental specimens and canopy trees with great success.  The biggest tree he has moved was a 21″ caliper, 50′ high mulberry (it was the owner’s choice), in November 2008; this past July he worked on Matt Foti’s project of moving several large trees, including the five 40′ high London plane trees showcased in posts on www.takingplace.net.

(To find those posts, click on the link in the last sentence, and then click on the ‘Plants’ link in Categories listed on the right side of the page.  All posts related to air-tool transplanting will pop up; the links for the London plane project are dated July 29, July 31, August 3, and August 7.  Browse among earlier ‘Plants’ posts for more articles on bare-root transplanting.)

So Mike has lots of experience with this work, and continues to think about the best ways — for the trees and for the crews — to move trees.  He made a number of observations in his Elm Bank talk about air-tool transplanting:

1.  The larger the tree, the more cost-effective the bare-root move is.

2.  Bare-root transplanting lets roots settle immediately into the soil on the new site.  With no root ball/surrounding soil interface to impede moisture saturation or interrupt moisture flow, the roots are able to adapt right away and start growing.  As a result, watering and aftercare are also easier and more effective.

3.  The greater the depth of good quality soil, the more apt roots are to grow down as well as out.

4.  Arborists and landscape architects MUST stress the need for sustained aftercare once a tree has been bare-root transplanted.  One year of attentive watering is good, but two, three, four, or even five years is better.

5.  Mike asked “Do we arborists plant trees or do we install them?”  When you install a B&B tree, he suggested, you dig a hole, put the tree in the ground, backfill, and water.  When you plant a tree, you remove the wire basket, remove the burlap and twine, possibly break up the soil mass, spread the roots out to promote outward growth, and water sufficiently for the next couple of years for the tree to root into its home.  ‘Installing’ a tree makes the tree simply a product, a commodity that can (and may have to be) replaced.  ‘Planting’ a tree recognizes and attends to the needs of this living organism, and promotes its good health and sustained long life.

6.  Air tools dry out root surfaces — pre-watering of the root mass and soil around a tree to be moved helps the tree hydrate and maintain turgor pressure during the transplant operation.  Mike suggested that trees may have a greater tolerance for short-term root drying than is commonly assumed, and urged the audience to observe what happens to the roots of trees they may move bare-root, and how those trees react to the process.

7.  When you use an air tool to excavate a tree for transplanting, dig your soil trench in sections, and dig it deep enough (measured in feet, not inches) to hold quite a bit of blown out soil, thus minimizing the number of times it needs to be emptied.  Mike pointed out that it’s necessary to consider how best to move the excess soil around; it’s important to plan the job at the outset, including how to access the plant(s) to be moved, how to avoid plants to remain, and where to stockpile the blown-out soil.

8.  The bare-root process can allow arborists use lighter equipment (depending on tree size, of course) than may be necessary for B&B trees.  A 2000-pound mini-excavator can pick up a six-inch elm, while to move that same tree B&B would require a large backhoe or front-end loader.

9.  The more fibrous a tree’s root system, the less likely it is to need cabling after a bare-root transplant.  A root mass’s size, the nature of its rooting, and the relationship between those factors and the tree’s size will also factor into the decision to cable a newly-planted bare-root tree.

Mike had blown soil out from around the roots of the Elm Bank elm the day before the workshop, and kept them covered until the workshop demonstrations began.

Healthy elm tree, soil blown off its roots, ready to be moved.

Healthy elm tree, soil blown off its roots, ready to be moved.

Closeup of the roots.  This root mass measured 14 feet across at its widest.  Roots have been pigtailed -- that is, tied together and lifted to keep them from breaking during the air-tool process and move.

Closeup of the roots. This root mass measured 14 feet across at its widest. Roots have been pigtailed -- that is, tied together and lifted to keep them from breaking during the air-tool excavation and move.

Dingo used to move the tree, whose new location was about fifty feet away from where it originally stood.

Dingo used to move the tree, whose new location was about fifty feet away from where it originally stood.

Mike Furgal and his assistant planning their course of action.  Note the tagline leading out from the canopy; it will be used to stabilize the tree during the move and backfill operation.

Mike Furgal and his assistant planning their course of action. Note the tagline leading out from the canopy; it will be used to stabilize the tree during the move and backfill operation.

Mike directs the Dingo forks under the root plate while his assistant holds the trunk stable.  Note the heavy burlap padding both on the Dingo and on the tree trunk.

Mike directs the Dingo forks under the root plate while his assistant holds the trunk stable. Note the heavy burlap padding both on the Dingo and on the tree trunk.

Lifting the tree.  Trunk padding rests on Dingo padding; tagline helps the trunk and canopy remain steady.

Lifting the tree. Trunk padding rests on Dingo padding; tagline helps the trunk and canopy remain steady.

Beginning to move the tree requires that it sit firmly on the forks, and remain balanced through the move.

Beginning to move the tree requires that it sit firmly on the forks, and remain balanced through the move.

Cutting the last few anchored roots, and any roots broken in the process.  Loppers work best; be sure they are sharp enough to make clean cuts (a set of root-pruning tools is useful, as cutting dirty roots with top-growth tools will ruin their blades quickly).

Cutting the last few anchored roots, and any roots broken in the process. Loppers work best; be sure they are sharp enough to make clean cuts (a set of root-pruning tools is useful, as cutting dirty roots with top-growth tools will ruin their blades quickly).

Moving the elm up its soil ramp and out of its plant bed; an attending arborist jumps in to help the roots past this thriving pine.

Moving the elm up its soil ramp and out of its plant bed; an attending arborist jumps in to help the roots past this thriving pine.

Elm tree on the move.  Stabilizing the trunk and moving slowly keeps the job safe.

Elm tree on the move. Stabilizing the trunk and moving slowly keeps the job safe.

Big canopy.  This year's growing season was moist and fairly cool, leading to lots of topgrowth and long twig extension.

Big canopy. This year's growing season was moist and fairly cool, leading to lots of topgrowth and long twig extension.

Mike steers the Dingo to the crater he has dug.  It is relatively shallow, to match the elm root mass depth, and wide (though not wide enough at first -- a couple of trenches had to be dug beyond the crater at the last minute to some extra-long roots).

Mike steers the Dingo to the crater he has dug. It is relatively shallow, to match the elm root mass depth, and wide (though not wide enough at first -- a couple of trenches had to be dug beyond the crater at the last minute to some extra-long roots).

Lowering the elm into its crater.

Lowering the elm into its crater.

Whoa!  A moment of excitement, when tree weight and crater's-edge sloped combined to tip the Dingo on its tracks.

Whoa! A moment of excitement, when tree weight and crater's-edge slope combined to tip the Dingo on its tracks.

The Iwo Jima shot.  A team of volunteers ran in to right the tree.

The Iwo Jima shot. A team of volunteers ran in to right the tree.

Holding the tree upright once the Dingo forks have been pulled out.

Holding the tree upright once the Dingo forks have been pulled out.

Again, holding the tree upright.  The pigtails now get cut open and roots spread out radially from the trunk.

Again, holding the tree upright. The pigtails now get cut open and roots spread out radially from the trunk.

Freeing the roots, beginning to dig in backfill, and watering to make a soil slurry that will eliminate air pockets and help anchor the spread-out root plate.

Freeing the roots, beginning to dig in backfill, and watering to make a soil slurry that will eliminate air pockets and help anchor the spread-out root plate.

With the tree in its new location, burlap padding the trunk may be removed.

With the tree in its new location, burlap padding the trunk may be removed.

Digging in the root mass.  It's important to pack the soil directly under the tree's trunk, to eliminate air holes and ensure against settling of the tree lower in its hole over time.

Digging in the root mass. It's important to pack the soil directly under the tree's trunk, to eliminate air holes and ensure against settling of the tree lower in its hole over time.

Big canopy on this tree, with a root mass to match.

Big canopy on this tree, with a root mass to match.

A bucket on the Dingo shakes backfill -- the native soil onsite in this case -- into the crater as workers wield shovels and a hose.

A bucket on the Dingo shakes backfill -- the native soil onsite in this case -- into the crater as workers wield shovels and a hose.

Trunk flare, placed in the proper relationship to finish grade.  Note the cut root ends; clean cuts with sharp tools let the wounds heal quickly.

Trunk flare, placed in the proper relationship to finish grade. Note the cut root ends; clean cuts with sharp tools let the wounds heal quickly.

More backfill, more water, and someone still holds the tagline for safety.  The Dingo never drives over the root mass, but drops soil onto it from outside.

More backfill, more water, and someone still holds the tagline for safety. The Dingo never drives over the root mass, but drops soil onto it from outside the planting hole.

Still more water, as the backfilling continues.

Still more water, as the backfilling continues.

Building the well wall, as water continues to flow.

Building the well wall, as water continues to flow.

Six-inch caliper elm tree in its new location.  Some wilt is evident -- likely because the tree was excavated the day before and the roots had been exposed through the course of the several-hours long workshop.

Six-inch caliper elm tree in its new location. Some wilt is evident -- likely because the tree was excavated the day before and the roots had been exposed through the course of the several-hours long workshop. The tagline finally lies slack. Two to four inches of mulch will next be added, and kept away from the trunk.

Demonstrating arborist at this station:

Mike Furgal, Furgal’s Tree and Landscape, Northborough, MA

Air spade tree transplanting

Read Full Post »

« Newer Posts - Older Posts »