Feeds:
Posts
Comments

Posts Tagged ‘Mike Furgal’

A reader, Mark Vanderwouw from Shady Lane Expert Tree Care, Inc. wrote a comment on the post titled Another Air-Tool Bare-Root Transplanting (cross-posted from TakingPlace.net, the other blog I co-write for landscape architects).  His company is excavating out several large specimen trees for a one-year storage period, after which they will plant the trees in their new home.  I answered his questions in the Comments section of that post (click on the link above and scroll down to the Comments), but they, and the questions I’ve been asked quite a bit in the last few months, need airing and discussion in a larger format.  So here goes:

Q:  How long did it take to excavate the Taxus and the Kousa Dogwood that were  growing next to each other?

A:  It took the better part of a day to excavate and transplant these trees.  Because their roots were intertwined, the process took longer than it would have had they been stand-alone specimens.

Interwoven roots of two trees to be moved makes the excavating process more time-consuming.

Q:  Is it necessary to keep the roots moist during the excavation?

A:  It is a good idea to do so, as compressed air tends to dry soil and roots.  Having a hose on hand to spray down the exposed roots every so often makes sense.  There has been some discussion among the arborists doing this work that because such a large volume of root mass gets saved, the tree is much more resilient and adaptable to the short period of drying caused during air-tool work.  Compressed air will blow off quite a lot of the tiny feeder roots — but they tend to regenerate pretty quickly once planted in the new site, and the ‘reservoir’ of moisture and nutrients in the remaining large roots helps sustain the tree during the excavation and move.

I don’t know of any scientific experiments that have been done to date to test this hypothesis — right now, the results are anecdotal — but I’m guessing that we will be hearing in the next few years about controlled experiments that prove or disprove this idea.  In the meantime, if you have been transplanting trees bare-root with air tools, feel free to write in and share your experience, and join the community that’s pushing into this new territory.

Q:  Do you use hydrogel on the roots of air-excavated trees?

A:  If a tree is being moved from one location on a site to another within a relatively short period of time (say, within a day), then hydrogel is probably not necessary.  If the tree is being moved from one site to another, and trucking or trailering is involved, a hydrogel spray and a secure tarp covering are probably advisable.  The following pictures come from Bransfield Tree Company LLC, which moved a large Beech tree last fall (subject of post next month):

Jonathan Bransfield spraying down the root plate of a tree with water and a 1% solution of Wilt-Pruf before tarping. Hydrogel was used in the backfill at planting.

The newly tarped root plate getting sprayed down with water before the tree's drive to another site.

Q:  Have you seen any mortality from this method of moving trees?

A:  There is some evidence that trees with particularly tender bark don’t do well with direct pressure from compressed air.  Matt Foti notes that two cherry trees he moved last year died; a few weeks ago he moved a cherry on his own property, and had his crew blow soil out from under the tree, aiming the air in toward the trunk from the blowout trench.  He has planted the tree out in his nursery and will watch it for the next year, to see how it respond to the more sensitive treatment.   Here’s an instance where the technology is available to do the work, but our knowledge is still catching up with the technology.  If anyone wants to do a controlled, scientific study, this species-specific question would be a great one to explore.  In the meantime, arborists doing this work will report in as they learn more.

Advertisements

Read Full Post »

Word is in:  the rough cut of the London Plane transplant video I’ve been working on will be showing at the Foti Tree and Landscaping booth at New England Grows tomorrow, Thursday, and Friday.  If you want to take a look at how these guys moved five very large (12-14″ caliper, 30′ high) London Plane trees bare-root last summer, stop by the booth, which is #2850 on the expo floor.  The process astonishing.  The sight of a fully leafed-out mature tree, in all its bare-root glory, travelling across a construction site fully upright on the forks of a front-end loader is amazing.

Bring your own popcorn; the video runs about 29 minutes long.

Blowing soil out from the first London Plane root mass, prior to moving.

Read Full Post »

I just got a rough cut today of the video, shot last summer, of the moving of a very large (about 14″ caliper, 30′ height) London Plane Tree.  It’s taken a while to edit several hours of footage down to a half an hour, but it’s about done, and in the next few weeks I hope to have added commentary.  This video is from the project run by Matt Foti’s crew, aided by Mike Furgal, and it showcases the techniques used in air-tool transplanting.  I hope to be able to preview the rough cut at New England Grows, and have the final version completed by the end of February; if there’s enough interest in the arborist community I’ll sell copies.  Stay tuned.

The first of five 12-14' caliper London Plane trees being excavated with air tools and transplanted bare root in August 2009.

Read Full Post »

Mike Furgal sent me photos of an 8″ caliper Weeping White Pine  that he moved a couple of weeks ago, remarking that this tree, though relatively small, was the most challenging tree he’s moved bare-root.

The tree was situated in a small berm next to a house and a driveway, and shared the bed with a 7′ Hinoki Cypress and an 8′ Blue Holly.  Mike blew soil out of the entire bed to move all three plants, whose roots were interwoven.

Pine roots running toward the house and drive extended no more than three feet. Roots running under the lawn told a different story; the two main roots that Mike found were 16-18 feet in length; they had plenty of moisture available and plenty of rooting room to grow.

Mike began work on the bed by blowing soil at the tree’s dripline and at its root collar, to assess where the roots were.  He found that they ran along the edge of the bed until they hit the house; from that point they grew out into the lawn.

Here are his photos:

beginning location 2

Rooting space is constrained by the berm's proximity to the house and the driveway.

begining location 3

Ample lawn space gives plenty of rooting opportunity in other directions.

beginning location 1

Lots of roots here -- note how they run along what had been the bed edge, and extend back toward the house. Once they hit the house, they then ran out into the lawn.

beforemove

Here's what the excavated bed looked like, with Hinoki Cypress, Blue Holly, and Weeping White Pine roots woven together.

veron pine diggiing

Tremendous root extension can be kept with air-tool excavating, and while not all fine roots remain, a significant number of them do.

veron white pine digging 2

The Pine ready for its move. These lawn-side roots are sixteen to eighteen feet long. Compare that root length to the accepted standard size of a B&B root ball, which allows ten inches of root-mass diameter for one inch of trunk caliper. For an apples to apples comparison, if we include the three feet of root on the tree's other side, this tree has 19 to 21 feet of root extension, as opposed to the 6-foot, 8-inch root mass diameter you would see on a B&B specimen.

veron white pine digging 3

Moving the excavated pine was the trickiest part. Mike and his helper used a Bobcat and a Dingo -- tricky to coordinate both machines at once.

veron moving 3

Closeup of the two monster roots extending away from the house and drive.

veron moving 1

Anyone else reminded of a bride with a really long train? One major difference: a bride doesn't require this kind of machinery to move around.

veron moving 2

The pine moving to its new home on the other side of the house.

I’ll post photos of the tree in its new location shortly.

Arborist:  Mike Furgal, Furgal Tree and Landscape, Northborough, MA

Read Full Post »

Posted on Taking Place on July 1, 2009:

A few posts back I mentioned my February 2009 article in Lawn and Landscape Magazine on bare-root tree transplanting using an air spade. That article was preceded by my December 1, 2008 article in American Nurseryman, in which news of the technique debuted. Both articles describe the workshop at which several trees — a Juniperus virginiana, a couple of Acer palmatum, a couple of Betula pendula ‘Gracilis’, among others — were spaded and moved. Both articles outline how to carry out the process, though the Lawn and Landscape article is a bit more explicit. And they compare the merits of different methods of transplanting (tree spaded, ball & burlap, and air spade), including how cost, speed of operation, and effect on tree health may vary.

The beauty of using an air spade to transplant specimen trees is that so much root mass can be preserved and moved with the tree. The following photos of a dwarf Japanese maple (Acer palmatum dissectum), lent by Matt Foti, illustrate just how effective at saving roots this technique is.

Matt and his crews are using an air spade routinely now in transplanting work, because it preserves the tree’s resources so well, minimizing transplant shock and easing re-establishment. They moved this tree in early September of 2008. Take a look:

Acer palmatum dissectum awaiting its move.  Soil under the tree has been lightly spaded to check surface roots.

Acer palmatum dissectum awaiting its move. Soil under the tree has been lightly spaded to check surface roots.

Same tree, roots now exposed by the air spade.  Note how far beyond the tree's dripline these roots extend.

Same tree, roots now exposed by the air spade. Note how far beyond the tree's dripline these roots extend.

Tree being lifted up for the move.  The crew has wrapped its trunk and main limbs, to avoid injury; guy lines insure that it won't tip in transit.

Tree being lifted up for the move. The crew has wrapped its trunk and main limbs, to avoid injury; guy lines insure that it won't tip in transit.

Wrapping thoroughly during this kind of move lessens the chance of bark injury.

Wrapping thoroughly during this kind of move lessens the chance of bark injury.

Tree in its new location, backfilled and awaiting thorough watering.  No staking is necessary, as most of the root plate has been preserved and will continue to support the tree in its new home.

Tree in its new location, backfilled and awaiting thorough watering. No staking is necessary, as most of the root plate has been preserved and will continue to support the tree in its new home.

Read Full Post »

In the year since I’ve been writing about bare-root transplanting and air-tool use, I’ve had the great good fortune to be able to ask questions of the real experts, the arborists who are doing this work and promoting it throughout Massachusetts and the US.  Three in particular have been especially helpful:

Mike Furgal

Mike Furgal

Mike Furgal, the original developer of the air-tool bare-root transplant method, has patiently reviewed my articles and given thoughtful and well-considered answers to all my questions.  He has a tremendous amount of knowledge about trees and transplanting, and he is extremely generous in sharing it.

Matt Foti

Matt Foti

Matt Foti, who hosted the first MAA workshop on air-tool bare-root transplanting (given by Mike and Matt) at his nursery at Nonset Farm, has taken the time to discuss a wide range of tree-related issues with me, and to provide clarifications to help make this information as up-to-the-minute and accurate as possible.  He has been the catalyst to get word of bare-root work out to the MAA and beyond, and has put energy and dedication into practicing, experimenting, and teaching.  Another generous guy.

Carl Cathcart

Carl Cathcart

Carl Cathcart, Consulting Arborist, has provided encouragement and still more information to me from the day we met at the Nonset Farm workshop.  He alerted me to the Cavicchio’s root-washing experiment, he talks up my writing to other arborists, and his encouragement is what got me writing about this stuff in the first place.

In July, Matt and Mike transplanted a number of very large trees for a project in Wellesley, MA.  They (and the homeowner, contractor, and landscape architect) kindly allowed me and a colleague to videotape the moving of two forty-foot high London Plane trees.  Editing of over six hours of videotape is underway now, and I’m hopeful that I’ll have a decent film this fall that Matt and Mike can do some voiceover comments on (not possible on site — air-tools are incredibly loud!).    When we’re done, it should give a fairly comprehensive look at how this method works for transplanting significant trees.  (And I bet Carl’s going to talk it up…)

For all these reasons, I offer my sincerest thanks to Mike, Matt, and Carl.  They are models of generosity, and I couldn’t be more grateful.

Read Full Post »

Air spade tree transplanting.  Warning:  Long post, tons of photos.

Probably the biggest draw of the Elm Bank workshop on September 10, 2009, was Mike Furgal’s moving of a 6″ caliper elm hybrid.  Mike first developed the method of air-tool bare-root transplanting in 2004, and has been working on it since, moving ornamental specimens and canopy trees with great success.  The biggest tree he has moved was a 21″ caliper, 50′ high mulberry (it was the owner’s choice), in November 2008; this past July he worked on Matt Foti’s project of moving several large trees, including the five 40′ high London plane trees showcased in posts on www.takingplace.net.

(To find those posts, click on the link in the last sentence, and then click on the ‘Plants’ link in Categories listed on the right side of the page.  All posts related to air-tool transplanting will pop up; the links for the London plane project are dated July 29, July 31, August 3, and August 7.  Browse among earlier ‘Plants’ posts for more articles on bare-root transplanting.)

So Mike has lots of experience with this work, and continues to think about the best ways — for the trees and for the crews — to move trees.  He made a number of observations in his Elm Bank talk about air-tool transplanting:

1.  The larger the tree, the more cost-effective the bare-root move is.

2.  Bare-root transplanting lets roots settle immediately into the soil on the new site.  With no root ball/surrounding soil interface to impede moisture saturation or interrupt moisture flow, the roots are able to adapt right away and start growing.  As a result, watering and aftercare are also easier and more effective.

3.  The greater the depth of good quality soil, the more apt roots are to grow down as well as out.

4.  Arborists and landscape architects MUST stress the need for sustained aftercare once a tree has been bare-root transplanted.  One year of attentive watering is good, but two, three, four, or even five years is better.

5.  Mike asked “Do we arborists plant trees or do we install them?”  When you install a B&B tree, he suggested, you dig a hole, put the tree in the ground, backfill, and water.  When you plant a tree, you remove the wire basket, remove the burlap and twine, possibly break up the soil mass, spread the roots out to promote outward growth, and water sufficiently for the next couple of years for the tree to root into its home.  ‘Installing’ a tree makes the tree simply a product, a commodity that can (and may have to be) replaced.  ‘Planting’ a tree recognizes and attends to the needs of this living organism, and promotes its good health and sustained long life.

6.  Air tools dry out root surfaces — pre-watering of the root mass and soil around a tree to be moved helps the tree hydrate and maintain turgor pressure during the transplant operation.  Mike suggested that trees may have a greater tolerance for short-term root drying than is commonly assumed, and urged the audience to observe what happens to the roots of trees they may move bare-root, and how those trees react to the process.

7.  When you use an air tool to excavate a tree for transplanting, dig your soil trench in sections, and dig it deep enough (measured in feet, not inches) to hold quite a bit of blown out soil, thus minimizing the number of times it needs to be emptied.  Mike pointed out that it’s necessary to consider how best to move the excess soil around; it’s important to plan the job at the outset, including how to access the plant(s) to be moved, how to avoid plants to remain, and where to stockpile the blown-out soil.

8.  The bare-root process can allow arborists use lighter equipment (depending on tree size, of course) than may be necessary for B&B trees.  A 2000-pound mini-excavator can pick up a six-inch elm, while to move that same tree B&B would require a large backhoe or front-end loader.

9.  The more fibrous a tree’s root system, the less likely it is to need cabling after a bare-root transplant.  A root mass’s size, the nature of its rooting, and the relationship between those factors and the tree’s size will also factor into the decision to cable a newly-planted bare-root tree.

Mike had blown soil out from around the roots of the Elm Bank elm the day before the workshop, and kept them covered until the workshop demonstrations began.

Healthy elm tree, soil blown off its roots, ready to be moved.

Healthy elm tree, soil blown off its roots, ready to be moved.

Closeup of the roots.  This root mass measured 14 feet across at its widest.  Roots have been pigtailed -- that is, tied together and lifted to keep them from breaking during the air-tool process and move.

Closeup of the roots. This root mass measured 14 feet across at its widest. Roots have been pigtailed -- that is, tied together and lifted to keep them from breaking during the air-tool excavation and move.

Dingo used to move the tree, whose new location was about fifty feet away from where it originally stood.

Dingo used to move the tree, whose new location was about fifty feet away from where it originally stood.

Mike Furgal and his assistant planning their course of action.  Note the tagline leading out from the canopy; it will be used to stabilize the tree during the move and backfill operation.

Mike Furgal and his assistant planning their course of action. Note the tagline leading out from the canopy; it will be used to stabilize the tree during the move and backfill operation.

Mike directs the Dingo forks under the root plate while his assistant holds the trunk stable.  Note the heavy burlap padding both on the Dingo and on the tree trunk.

Mike directs the Dingo forks under the root plate while his assistant holds the trunk stable. Note the heavy burlap padding both on the Dingo and on the tree trunk.

Lifting the tree.  Trunk padding rests on Dingo padding; tagline helps the trunk and canopy remain steady.

Lifting the tree. Trunk padding rests on Dingo padding; tagline helps the trunk and canopy remain steady.

Beginning to move the tree requires that it sit firmly on the forks, and remain balanced through the move.

Beginning to move the tree requires that it sit firmly on the forks, and remain balanced through the move.

Cutting the last few anchored roots, and any roots broken in the process.  Loppers work best; be sure they are sharp enough to make clean cuts (a set of root-pruning tools is useful, as cutting dirty roots with top-growth tools will ruin their blades quickly).

Cutting the last few anchored roots, and any roots broken in the process. Loppers work best; be sure they are sharp enough to make clean cuts (a set of root-pruning tools is useful, as cutting dirty roots with top-growth tools will ruin their blades quickly).

Moving the elm up its soil ramp and out of its plant bed; an attending arborist jumps in to help the roots past this thriving pine.

Moving the elm up its soil ramp and out of its plant bed; an attending arborist jumps in to help the roots past this thriving pine.

Elm tree on the move.  Stabilizing the trunk and moving slowly keeps the job safe.

Elm tree on the move. Stabilizing the trunk and moving slowly keeps the job safe.

Big canopy.  This year's growing season was moist and fairly cool, leading to lots of topgrowth and long twig extension.

Big canopy. This year's growing season was moist and fairly cool, leading to lots of topgrowth and long twig extension.

Mike steers the Dingo to the crater he has dug.  It is relatively shallow, to match the elm root mass depth, and wide (though not wide enough at first -- a couple of trenches had to be dug beyond the crater at the last minute to some extra-long roots).

Mike steers the Dingo to the crater he has dug. It is relatively shallow, to match the elm root mass depth, and wide (though not wide enough at first -- a couple of trenches had to be dug beyond the crater at the last minute to some extra-long roots).

Lowering the elm into its crater.

Lowering the elm into its crater.

Whoa!  A moment of excitement, when tree weight and crater's-edge sloped combined to tip the Dingo on its tracks.

Whoa! A moment of excitement, when tree weight and crater's-edge slope combined to tip the Dingo on its tracks.

The Iwo Jima shot.  A team of volunteers ran in to right the tree.

The Iwo Jima shot. A team of volunteers ran in to right the tree.

Holding the tree upright once the Dingo forks have been pulled out.

Holding the tree upright once the Dingo forks have been pulled out.

Again, holding the tree upright.  The pigtails now get cut open and roots spread out radially from the trunk.

Again, holding the tree upright. The pigtails now get cut open and roots spread out radially from the trunk.

Freeing the roots, beginning to dig in backfill, and watering to make a soil slurry that will eliminate air pockets and help anchor the spread-out root plate.

Freeing the roots, beginning to dig in backfill, and watering to make a soil slurry that will eliminate air pockets and help anchor the spread-out root plate.

With the tree in its new location, burlap padding the trunk may be removed.

With the tree in its new location, burlap padding the trunk may be removed.

Digging in the root mass.  It's important to pack the soil directly under the tree's trunk, to eliminate air holes and ensure against settling of the tree lower in its hole over time.

Digging in the root mass. It's important to pack the soil directly under the tree's trunk, to eliminate air holes and ensure against settling of the tree lower in its hole over time.

Big canopy on this tree, with a root mass to match.

Big canopy on this tree, with a root mass to match.

A bucket on the Dingo shakes backfill -- the native soil onsite in this case -- into the crater as workers wield shovels and a hose.

A bucket on the Dingo shakes backfill -- the native soil onsite in this case -- into the crater as workers wield shovels and a hose.

Trunk flare, placed in the proper relationship to finish grade.  Note the cut root ends; clean cuts with sharp tools let the wounds heal quickly.

Trunk flare, placed in the proper relationship to finish grade. Note the cut root ends; clean cuts with sharp tools let the wounds heal quickly.

More backfill, more water, and someone still holds the tagline for safety.  The Dingo never drives over the root mass, but drops soil onto it from outside.

More backfill, more water, and someone still holds the tagline for safety. The Dingo never drives over the root mass, but drops soil onto it from outside the planting hole.

Still more water, as the backfilling continues.

Still more water, as the backfilling continues.

Building the well wall, as water continues to flow.

Building the well wall, as water continues to flow.

Six-inch caliper elm tree in its new location.  Some wilt is evident -- likely because the tree was excavated the day before and the roots had been exposed through the course of the several-hours long workshop.

Six-inch caliper elm tree in its new location. Some wilt is evident -- likely because the tree was excavated the day before and the roots had been exposed through the course of the several-hours long workshop. The tagline finally lies slack. Two to four inches of mulch will next be added, and kept away from the trunk.

Demonstrating arborist at this station:

Mike Furgal, Furgal’s Tree and Landscape, Northborough, MA

Air spade tree transplanting

Read Full Post »

Older Posts »