Feeds:
Posts
Comments

Archive for the ‘Arboriculture’ Category

I took a great class this past January at the Arnold Arboretum.  It was called Grafting Techniques for Ornamental Trees, and was taught by Jack Alexander, the Arboretum’s Plant Propagator.  Jack, who is not only an extremely talented plantsman but an excellent teacher, taught us how to prepare cuttings, how to make several different kinds of grafting cuts, how to fit scion and root stock together, wrap the graft point with an elastic band, and then wrap the whole shebang with Parafilm.

Anyway, at one point during the daylong class  Jack had us take a break from grafting and showed the class some slides.  Among them were shots of a grafting project that he had been commissioned, privately, to work on some years ago.

The tree, located on a property outside of Boston, was a 40-50′ high grafted weeping beech.  It had been top-grafted at a point about 5′ from grade; the trunk below the graft point was about 30″ in diameter, while the trunk above it was considerably larger.

Hartney Greymont, Inc., arborists in charge of the tree, had noticed flagging in the tree’s canopy in 1984.  They hypothesized that the roots could not get enough water up through the constriction to the tree’s crown, and that photosynthate was accumulating above the graft point.  They called in Jack Alexander to do some grafting that could help improve the situation.

The problem:  Constriction at the graft point was retarding the flow of water up to the tree’s canopy, and possibly preventing photosynthate from flowing down to the roots from the crown.

The solution:  Remedial grafting, using four beech saplings to create supplemental trunks.

The process:  In the fall of 1984, Hartney Greymont planted four 2-3″ caliper (3/4″ dbh) beech saplings around the tree, evenly spaced from each other and about 3′ out from the tree’s trunk.  The saplings settled in over the winter.   Jack, who had the experience and expertise to work comfortably with such a valuable tree, then grafted the tops of each sapling to the trunk of the specimen beech above the graft point. This process is called inarching.  Jack believes he performed the grafts in April of 1985.

The newly inarched beech, with three of the four saplings planted and grafted above the beech's graft point visible here. Matching the cambium of the saplings to the cambium of the mature tree allows photosynthate from the tree's crown to flow down the sapling trunks, supplying them with nutrients that otherwise would serve to overenlarge the beech's trunk just above the graft point, making the tree more susceptible to failure. The inarched saplings make a conduit for water to flow upwards into the canopy from the roots as they benefit from the abundance of photosynthate, and in turn enhance the tree's stability. Photo Copyright © 1985 Jack Alexander, used by permission.

The following year, one sapling had died, so Hartney planted another, and Jack grafted it to the tree in the spring of 1986.  A total of four buttress trees now help support the specimen tree.

The result:  Photosynthate flows down from the tree’s crown through the constricted graft point, as it always has, but it also flows down through the four inarched saplings.  Because the saplings are being nourished by the mature crown of the specimen, over the last 26 years they have come to serve as living buttresses to the mother tree.

In Jack’s words:  “By grafting additional rootstocks, we provided roots to provide more water to the top where it was flagging. The additional roots systems grew rapidly, tending to corroborate the opinion that there was a surplus of photosynthate accumulating above the graft union.”

A few weeks ago, in late April 2011, Carl Cathcart took me to see the beech.  The house had been sold since the beech had been buttressed, but the current homeowner was kind enough to let us see and photograph it.  Here are photos of it as it stands today.  It was wonderful to see this behemoth and to read its character, especially knowing its history.

Carl Cathcart with the inarched specimen weeping beech.

The beech from a different angle. What look like elephant legs under the tree are the ingrafted saplings that have now become living buttresses.

Three buttresses are visible in this image; the smallest is about 6" dbh. This photo was taken from about the same point as Jack Alexander's 1985 photo.

When I sent the photos to Jack, he wrote ” It’s nice to see these pics.  The tree seems like an old friend.” You can see why — this is a tree with personality, and Jack did some remarkable work with it.

Propagator/Grafter:  Jack Alexander

Arborist in charge:  Hartney Greymont, Inc. 

Read Full Post »

If we can clone crabapples, maples, and chamaecyparis, why can’t we clone the enormous redwoods that stand as the world’s tallest trees?  Well, apparently we can. This article in Sunday’s New York Times (4/10/2011) explains how a group of arborists dedicated to propagating and planting clonal stands of coastal and giant sequoias, using tissue and cuttings harvested from the sprouting stumps of sequoias that have been cut down.   It’s a compelling read, has good pix, and might leave you with something to chew on.

 

 

 

 

Read Full Post »

Yesterday I swung by the site where Herbie, the American Elm in Yarmouth, Maine, had stood for over two centuries.  Herbie was taken down last January; to read the tale see this post, and to see photos of Herbie’s stump, click on this link.

I hadn’t planned to stop and see the stump — what more could be said about a stump?  As the exit from Rte. 95 neared, though, I wondered if anyone might have put up any signs, or even if some of the woodwork from Herbie’s wood might be displayed on the site.

It wasn’t though, and in fact all that remained of the stump was an area, approximately 12′ x 18′,  of wood chips.  Herbie’s stump had been ground.  The adjacent road has been undergoing repaving, and stakes and markers dot the roadside and the edge of the chipped area.  We’ll have to wait and see what takes place now where Herbie once stood.

All that remains are wood chips, an open space, and a view of the utility pole.

Read Full Post »

Mark Smith, construction project manager for Belknap Landscape Company in Gilford, NH, sent me photos and a description of the air-tool transplant his company executed with Piscataqua Landscaping recently.  Belknap has been using air tools for transplanting, site preparation (excavating roots at foundation limit lines prior to the foundation excavation), and root forensics, and has also used compressed air to reduce weight in larger B&B-dug root balls being moved.

Here’s what Mark had to say about the Weeping Norway Spruce they recently moved from Baker Valley Nurseries (with light editing):

“We moved a 25+ year old Weeping Norway Spruce that has resided in Baker Valley Nurseries in Rumney for the duration of its life.  This tree stood 10-11 feet tall and at least 12 feet wide on one direction.  The last time this tree was root pruned with a spade was 10 years ago.

Through the spading process we could clearly see where this root pruning occurred.  All said and done we were left with a 25-30′ wide root system…You cannot see that in these pics real well, as we had all the roots coiled up into harnesses and sitting atop the root pan.

I helped Piscataqua with the digging of this and am told so far it looks great in its new home on the coast.  Just to dig and get the tree in the truck took about 4-5 hours with 2 of us spading, and then 4 of us to get the tree in the truck which was actually the worst part.”

The tree before excavation.

Branches tied back to permit easier blowout.

Leader wrapped in burlap to protect it during excavation and moving.

Deepening the excavation.

Root plate covered in wet burlap for the pickup and move.

Guiding the forks for the lift.

Confirming a balanced and firm placement on the forks.

Guiding the lift.

A final spray-down before transport.

No photos yet of the tree in its new location, but when they come in I’ll post them.

Tree and equipment supplier:   Baker Valley Nurseries, Inc., Wentworth, NH

Moved by:

Piscataqua Landscaping Company, Inc., Eliot, ME  (Booth Hemingway and Travis Wright) and

Belknap Landscape Company, Inc., Gilford, NH (Mark Smith)

Read Full Post »

Last week I drove to Wellesley College to see the Dwarf Alberta Spruce that Jim Doyle and Don Garrick had moved bare-root last November.  Fritz Hoffman, an Alaska contractor in town to learn about bare-root transplant work, accompanied me, and we walked and walked along the lakeshore looking for the Spruce.

Well, it wasn’t there.  We turned around, backtracked along the pathway, and came upon a grounds crew working on a plaza installation.  We stopped and met John Olmsted, Manager of Landscape Operations, who told us that the Spruce had died.  He said that despite its loss, the arborists had recently transplanted a Sugar Maple, two Kousa Dogwoods, and an American Smokebush bare-root.

The Dwarf Alberta Spruce didn't make it, but this spring-transplanted Kousa Dogwood may well thrive in this spot.

Later, Jim Doyle told me that he thought they had moved the Spruce to a too-exposed location.  It seemed to fare well through the winter, but in March had turned brown and had to be removed.  We speculated that the move from a very sheltered spot to an open waterfront location might have placed too high a demand on the plant.  It might have survived the dangerous phenomenon of frozen soils and warm air had it been wrapped in burlap, but it’s impossible to know.

Nice trunk flare on the newly transplanted Sugar Maple at Wellesley College.

What is heartening is that the Spruce move came about because Jim and Don took a chance — and though the risk didn’t pan out, the College believed in the possibility of success, and authorized the bare-root moving of four more plants.  When it comes down to a choice, especially on a large campus, between moving or destroying a tree, the opportunity to move and save the tree may make sense.   Actively managing a landscape — especially one with valuable mature trees —  requires this kind of decision-making, and newly available technologies can give greater flexibility in the move-save debate.

Read Full Post »

A reader, Mark Vanderwouw from Shady Lane Expert Tree Care, Inc. wrote a comment on the post titled Another Air-Tool Bare-Root Transplanting (cross-posted from TakingPlace.net, the other blog I co-write for landscape architects).  His company is excavating out several large specimen trees for a one-year storage period, after which they will plant the trees in their new home.  I answered his questions in the Comments section of that post (click on the link above and scroll down to the Comments), but they, and the questions I’ve been asked quite a bit in the last few months, need airing and discussion in a larger format.  So here goes:

Q:  How long did it take to excavate the Taxus and the Kousa Dogwood that were  growing next to each other?

A:  It took the better part of a day to excavate and transplant these trees.  Because their roots were intertwined, the process took longer than it would have had they been stand-alone specimens.

Interwoven roots of two trees to be moved makes the excavating process more time-consuming.

Q:  Is it necessary to keep the roots moist during the excavation?

A:  It is a good idea to do so, as compressed air tends to dry soil and roots.  Having a hose on hand to spray down the exposed roots every so often makes sense.  There has been some discussion among the arborists doing this work that because such a large volume of root mass gets saved, the tree is much more resilient and adaptable to the short period of drying caused during air-tool work.  Compressed air will blow off quite a lot of the tiny feeder roots — but they tend to regenerate pretty quickly once planted in the new site, and the ‘reservoir’ of moisture and nutrients in the remaining large roots helps sustain the tree during the excavation and move.

I don’t know of any scientific experiments that have been done to date to test this hypothesis — right now, the results are anecdotal — but I’m guessing that we will be hearing in the next few years about controlled experiments that prove or disprove this idea.  In the meantime, if you have been transplanting trees bare-root with air tools, feel free to write in and share your experience, and join the community that’s pushing into this new territory.

Q:  Do you use hydrogel on the roots of air-excavated trees?

A:  If a tree is being moved from one location on a site to another within a relatively short period of time (say, within a day), then hydrogel is probably not necessary.  If the tree is being moved from one site to another, and trucking or trailering is involved, a hydrogel spray and a secure tarp covering are probably advisable.  The following pictures come from Bransfield Tree Company LLC, which moved a large Beech tree last fall (subject of post next month):

Jonathan Bransfield spraying down the root plate of a tree with water and a 1% solution of Wilt-Pruf before tarping. Hydrogel was used in the backfill at planting.

The newly tarped root plate getting sprayed down with water before the tree's drive to another site.

Q:  Have you seen any mortality from this method of moving trees?

A:  There is some evidence that trees with particularly tender bark don’t do well with direct pressure from compressed air.  Matt Foti notes that two cherry trees he moved last year died; a few weeks ago he moved a cherry on his own property, and had his crew blow soil out from under the tree, aiming the air in toward the trunk from the blowout trench.  He has planted the tree out in his nursery and will watch it for the next year, to see how it respond to the more sensitive treatment.   Here’s an instance where the technology is available to do the work, but our knowledge is still catching up with the technology.  If anyone wants to do a controlled, scientific study, this species-specific question would be a great one to explore.  In the meantime, arborists doing this work will report in as they learn more.

Read Full Post »

At New England Grows, I met Jim Doyle, one of Wellesley College‘s team of arborists. He told me about an air-tool transplant that he and a colleague performed last November at the College.  He was kind enough to send photos, and with them included this text, which I have edited only slightly:

“My colleague Don Garrick and I performed the transplant on Nov. 3rd 2009.  The reason for the transplant was that the tree, a Picea glauca ‘Conica’ (Dwarf Alberta Spruce), had outgrown its current location and was providing too much shade to the greenhouse.  An old accession tag we found told us that the tree had been planted in 1956.

The tree in its original location, quite close to the greenhouse.

Jim using the airspade to locate the root zone's outer limits.

Don digging a trench outside of the root zone.

In this and in the next two pictures, Jim removes soil from the Picea's roots.

  

Working in from the perimeter toward the trunk.

Don lifts the tree out of the hole.

Transporting the tree to its new home across campus. The tree has been laid down for stability.

The tree in its new location, with plenty of room for continued growth up and out.

During the whole process we watered the roots every 5 to 10 min.  We wrapped the roots in wet burlap for the transport.  Once we had placed it in its new home, I sprayed the tree with with anti-transpirant and we then staked it, as its new home was a very windy location on the lake.  The stakes and guys will probably be removed this summer once we can confirm that the tree has settled well enough in its new hole.”

Here’s an example of the thoughtful management of plants on a property.  This Dwarf Alberta Spruce was in good shape, but had grown out of its original location, tucked behind the greenhouse.  Moving it was a fine way to save the tree, preserve the antique greenhouse glass adjacent to it, eliminate the greenhouse interior shading problem, and revamp the area — and now the tree, in its new spot, has room to grow and is visible to the Wellesley College community.

Project site:  Wellesley College campus, Wellesley, MA

Project arborists:  Jim Doyle, ISA-Certified Arborist; Don Garrick, MA-Certified Arborist

Read Full Post »

Another question asked at last week’s New England Grows about bare-root transplanting was “How do you make sure the roots don’t dry out?” The answer, of course, is that you water the tree you’re moving.  You water it thoroughly a couple of days before the transplant, to insure that the tree’s tissues have good turgor pressure and moisture reserves for the bare-rooting.  You take a break every now and again during the blow-out (if you’re using compressed air) and spray down the exposed roots with water.  You may spray more water on the roots — the top, bottom, and inside of the root mass — when you pick the tree up on forks to deliver it to its new home.  You ‘mud in’ the tree as you backfill, saturating the backfill soil with water to eliminate any air pockets and again, to combat root dessication.   And once you have mulched the tree well, you water still more.

Water in all phases of the operation is key to tree transplanting.

Cornell’s Urban Horticulture Institute advocates using a hydrogel slurry to hold water on the bare roots during planting.  Their excellent Creating the Urban Forest:  The Bare-Root Method describes the process of planting young trees bare-root, and is well worth reading.  The challenge of using a slurry for large-tree transplanting would be in getting a consistent coating of hydrogel on the roots (you can’t dip the root plate in a tub, the way you can with a sapling root mass) — but there must be a solution (so to speak) to that problem. And finally, aftercare is critical.  Moving a large specimen tree bare-root takes time and effort, and it would be folly to follow all the steps, get the tree in the ground, and then leave its re-establishment and survival up to chance.  Some arborists add fertilizer and bio-stimulants to the backfill, some don’t.  What is essential, again, is water.  Consistent and adequate water for the first growing season is the best way to make sure that a transplanted tree makes the transition to its new home, survives, and thrives.

Watering in a root-washed pin oak at Cavicchio's Nursery. Photo courtesy of Carl Cathcart.

Read Full Post »

Thousands of people showed up at New England Grows this past week.  One of the conference’s principal speakers, Bonnie Lee Appleton, unfortunately fell ill and had to cancel her Wednesday talk; for a while the day before the conference it looked as if one of the two convention center ballrooms would be empty for a couple of hours.  At the last minute, NE Grows asked Matt Foti to take Ms. Appleton’s place with a talk on bare-root planting.

The talk was great — packed with information — and sent a steady stream of people to the Foti Tree and Landscaping booth to learn more about bare-root transplanting.  Matt teamed with Teddy and Mike, two of his arborists, to field questions at the booth, which had a good set of air-tool transplant photos, a continually running rough cut of my London Plane video, and two 3-inch caliper Zelkovas from Matt’s nursery. One of the Zelkovas had been dug, balled, and burlapped; the other sat with its bare roots splayed on a sheet of plastic, showing off their extension (they extended about 3-4′ on all sides from the tree trunk), uncut tapers, and web of water-collecting and nutrient-storing capacity.  Every now and again one of the arborists would spray the roots with water.

It was cool to watch visitors to the booth stop and take in what they were seeing.  Some of them shook their heads and moved on; most, though, would watch the video for a few moments, or peer at the photos and the trees and start asking questions.  Matt and Timmy and Mike rarely had a moment in the three days when they weren’t answering questions.

A couple of questions popped up over and over.   Arborists, landscape architects, designers, and contractors all wanted to know how much air-tool transplantation costs.  The answer, based on labor requirements, species, condition, and size of tree, as well as on site conditions, was that bare-rooting a tree for transplant may cost more than digging it with a tree spade, but less than digging it with the more traditional drumlaced B&B method.  Bare-rooting a tree for transplant typically preserves at least 90% of the tree’s roots, though, a claim that cannot be made for the other methods.  The more roots you save, the less transplant stress and the shorter the tree’s reestablishment period — and all other factors being equal, the healthier the tree tends to be after transplant.

The other question, also coming from arborists, landscape architects, designers, and contractors, was about taproots.  How did bare-root transplant affect a taprooted tree?  The answer is that taproots are rarely an issue, at least in this part of the world.  In New England, soils tend to be shallow.  As we know, trees tend to develop their roots in the top 18″ of soil; the larger the tree, the deeper that zone may go, but typically it extends no more than 3 or 4 feet below grade.  Some thick roots do extend vertically down in this zone, but many more run horizontally away from the tree’s trunk.

It’s helpful to keep in mind another factor when thinking about taproots and transplanting trees.  More often than not, a large tree being transplanted was planted out years earlier as a B&B plant, or possibly moved into place with a tree spade.  Both methods would have cut any taproot in the initial planting.  When the end of a root is cut, the tree tends to send shoots out from just above the cut end.  In a vertically oriented root, the new shoots are apt to extend horizontally from the cut end, and feeder roots would similarly extend out horizontally.  The situation may well be different for a tree that has grown from seed in one place, that someone now wants to transplant bare root, but for most landscape trees the taproot issue is moot — whatever taproot may have existed when the tree seed germinated has already been cut, and the tree has adjusted for its loss.

A carrot grows downward, with rootlets out to the side and foliage above ground. A tree is not a carrot. Photo by obenson in Flickr.

This beech tree was moved last fall, having been transplanted once about 20 years ago. See how the root mass extends far out horizontally, with a relatively shallow depth.

This is one of the thickest roots extending vertically from the beech's trunk. This root was cut in the earlier (20 years previous) transplant; note the resultant root growth just above the cut.

Read Full Post »

Word is in:  the rough cut of the London Plane transplant video I’ve been working on will be showing at the Foti Tree and Landscaping booth at New England Grows tomorrow, Thursday, and Friday.  If you want to take a look at how these guys moved five very large (12-14″ caliper, 30′ high) London Plane trees bare-root last summer, stop by the booth, which is #2850 on the expo floor.  The process astonishing.  The sight of a fully leafed-out mature tree, in all its bare-root glory, travelling across a construction site fully upright on the forks of a front-end loader is amazing.

Bring your own popcorn; the video runs about 29 minutes long.

Blowing soil out from the first London Plane root mass, prior to moving.

Read Full Post »

« Newer Posts - Older Posts »