Feeds:
Posts
Comments

Posts Tagged ‘trunk flare’

If you’ve been interested in the issues on this blog, you might well want to look into another blog, this one written by four horticulture professors.  They’re each based somewhere different — Washington State, Virginia, Michigan, and Minnesota — and they write with humor and expertise about plants and plant issues.  The Garden Professors started posting in July 2009.  They talk about root-washing, propagation, nursery practices, soil contaminants, slugs, rubber mulch — you name it, they’re addressing it.  A recent post highlighted the air-tool transplant of a beautiful 10″ caliper weeping white pine by a Michigan State University Nursery Management class and the MSU arborist. — take a look for some good pix and clear, personable, often funny writing about a great range of up-to-the-minute plant issues.

Advertisements

Read Full Post »

Air spade tree transplanting.  Warning:  Long post, tons of photos.

Probably the biggest draw of the Elm Bank workshop on September 10, 2009, was Mike Furgal’s moving of a 6″ caliper elm hybrid.  Mike first developed the method of air-tool bare-root transplanting in 2004, and has been working on it since, moving ornamental specimens and canopy trees with great success.  The biggest tree he has moved was a 21″ caliper, 50′ high mulberry (it was the owner’s choice), in November 2008; this past July he worked on Matt Foti’s project of moving several large trees, including the five 40′ high London plane trees showcased in posts on www.takingplace.net.

(To find those posts, click on the link in the last sentence, and then click on the ‘Plants’ link in Categories listed on the right side of the page.  All posts related to air-tool transplanting will pop up; the links for the London plane project are dated July 29, July 31, August 3, and August 7.  Browse among earlier ‘Plants’ posts for more articles on bare-root transplanting.)

So Mike has lots of experience with this work, and continues to think about the best ways — for the trees and for the crews — to move trees.  He made a number of observations in his Elm Bank talk about air-tool transplanting:

1.  The larger the tree, the more cost-effective the bare-root move is.

2.  Bare-root transplanting lets roots settle immediately into the soil on the new site.  With no root ball/surrounding soil interface to impede moisture saturation or interrupt moisture flow, the roots are able to adapt right away and start growing.  As a result, watering and aftercare are also easier and more effective.

3.  The greater the depth of good quality soil, the more apt roots are to grow down as well as out.

4.  Arborists and landscape architects MUST stress the need for sustained aftercare once a tree has been bare-root transplanted.  One year of attentive watering is good, but two, three, four, or even five years is better.

5.  Mike asked “Do we arborists plant trees or do we install them?”  When you install a B&B tree, he suggested, you dig a hole, put the tree in the ground, backfill, and water.  When you plant a tree, you remove the wire basket, remove the burlap and twine, possibly break up the soil mass, spread the roots out to promote outward growth, and water sufficiently for the next couple of years for the tree to root into its home.  ‘Installing’ a tree makes the tree simply a product, a commodity that can (and may have to be) replaced.  ‘Planting’ a tree recognizes and attends to the needs of this living organism, and promotes its good health and sustained long life.

6.  Air tools dry out root surfaces — pre-watering of the root mass and soil around a tree to be moved helps the tree hydrate and maintain turgor pressure during the transplant operation.  Mike suggested that trees may have a greater tolerance for short-term root drying than is commonly assumed, and urged the audience to observe what happens to the roots of trees they may move bare-root, and how those trees react to the process.

7.  When you use an air tool to excavate a tree for transplanting, dig your soil trench in sections, and dig it deep enough (measured in feet, not inches) to hold quite a bit of blown out soil, thus minimizing the number of times it needs to be emptied.  Mike pointed out that it’s necessary to consider how best to move the excess soil around; it’s important to plan the job at the outset, including how to access the plant(s) to be moved, how to avoid plants to remain, and where to stockpile the blown-out soil.

8.  The bare-root process can allow arborists use lighter equipment (depending on tree size, of course) than may be necessary for B&B trees.  A 2000-pound mini-excavator can pick up a six-inch elm, while to move that same tree B&B would require a large backhoe or front-end loader.

9.  The more fibrous a tree’s root system, the less likely it is to need cabling after a bare-root transplant.  A root mass’s size, the nature of its rooting, and the relationship between those factors and the tree’s size will also factor into the decision to cable a newly-planted bare-root tree.

Mike had blown soil out from around the roots of the Elm Bank elm the day before the workshop, and kept them covered until the workshop demonstrations began.

Healthy elm tree, soil blown off its roots, ready to be moved.

Healthy elm tree, soil blown off its roots, ready to be moved.

Closeup of the roots.  This root mass measured 14 feet across at its widest.  Roots have been pigtailed -- that is, tied together and lifted to keep them from breaking during the air-tool process and move.

Closeup of the roots. This root mass measured 14 feet across at its widest. Roots have been pigtailed -- that is, tied together and lifted to keep them from breaking during the air-tool excavation and move.

Dingo used to move the tree, whose new location was about fifty feet away from where it originally stood.

Dingo used to move the tree, whose new location was about fifty feet away from where it originally stood.

Mike Furgal and his assistant planning their course of action.  Note the tagline leading out from the canopy; it will be used to stabilize the tree during the move and backfill operation.

Mike Furgal and his assistant planning their course of action. Note the tagline leading out from the canopy; it will be used to stabilize the tree during the move and backfill operation.

Mike directs the Dingo forks under the root plate while his assistant holds the trunk stable.  Note the heavy burlap padding both on the Dingo and on the tree trunk.

Mike directs the Dingo forks under the root plate while his assistant holds the trunk stable. Note the heavy burlap padding both on the Dingo and on the tree trunk.

Lifting the tree.  Trunk padding rests on Dingo padding; tagline helps the trunk and canopy remain steady.

Lifting the tree. Trunk padding rests on Dingo padding; tagline helps the trunk and canopy remain steady.

Beginning to move the tree requires that it sit firmly on the forks, and remain balanced through the move.

Beginning to move the tree requires that it sit firmly on the forks, and remain balanced through the move.

Cutting the last few anchored roots, and any roots broken in the process.  Loppers work best; be sure they are sharp enough to make clean cuts (a set of root-pruning tools is useful, as cutting dirty roots with top-growth tools will ruin their blades quickly).

Cutting the last few anchored roots, and any roots broken in the process. Loppers work best; be sure they are sharp enough to make clean cuts (a set of root-pruning tools is useful, as cutting dirty roots with top-growth tools will ruin their blades quickly).

Moving the elm up its soil ramp and out of its plant bed; an attending arborist jumps in to help the roots past this thriving pine.

Moving the elm up its soil ramp and out of its plant bed; an attending arborist jumps in to help the roots past this thriving pine.

Elm tree on the move.  Stabilizing the trunk and moving slowly keeps the job safe.

Elm tree on the move. Stabilizing the trunk and moving slowly keeps the job safe.

Big canopy.  This year's growing season was moist and fairly cool, leading to lots of topgrowth and long twig extension.

Big canopy. This year's growing season was moist and fairly cool, leading to lots of topgrowth and long twig extension.

Mike steers the Dingo to the crater he has dug.  It is relatively shallow, to match the elm root mass depth, and wide (though not wide enough at first -- a couple of trenches had to be dug beyond the crater at the last minute to some extra-long roots).

Mike steers the Dingo to the crater he has dug. It is relatively shallow, to match the elm root mass depth, and wide (though not wide enough at first -- a couple of trenches had to be dug beyond the crater at the last minute to some extra-long roots).

Lowering the elm into its crater.

Lowering the elm into its crater.

Whoa!  A moment of excitement, when tree weight and crater's-edge sloped combined to tip the Dingo on its tracks.

Whoa! A moment of excitement, when tree weight and crater's-edge slope combined to tip the Dingo on its tracks.

The Iwo Jima shot.  A team of volunteers ran in to right the tree.

The Iwo Jima shot. A team of volunteers ran in to right the tree.

Holding the tree upright once the Dingo forks have been pulled out.

Holding the tree upright once the Dingo forks have been pulled out.

Again, holding the tree upright.  The pigtails now get cut open and roots spread out radially from the trunk.

Again, holding the tree upright. The pigtails now get cut open and roots spread out radially from the trunk.

Freeing the roots, beginning to dig in backfill, and watering to make a soil slurry that will eliminate air pockets and help anchor the spread-out root plate.

Freeing the roots, beginning to dig in backfill, and watering to make a soil slurry that will eliminate air pockets and help anchor the spread-out root plate.

With the tree in its new location, burlap padding the trunk may be removed.

With the tree in its new location, burlap padding the trunk may be removed.

Digging in the root mass.  It's important to pack the soil directly under the tree's trunk, to eliminate air holes and ensure against settling of the tree lower in its hole over time.

Digging in the root mass. It's important to pack the soil directly under the tree's trunk, to eliminate air holes and ensure against settling of the tree lower in its hole over time.

Big canopy on this tree, with a root mass to match.

Big canopy on this tree, with a root mass to match.

A bucket on the Dingo shakes backfill -- the native soil onsite in this case -- into the crater as workers wield shovels and a hose.

A bucket on the Dingo shakes backfill -- the native soil onsite in this case -- into the crater as workers wield shovels and a hose.

Trunk flare, placed in the proper relationship to finish grade.  Note the cut root ends; clean cuts with sharp tools let the wounds heal quickly.

Trunk flare, placed in the proper relationship to finish grade. Note the cut root ends; clean cuts with sharp tools let the wounds heal quickly.

More backfill, more water, and someone still holds the tagline for safety.  The Dingo never drives over the root mass, but drops soil onto it from outside.

More backfill, more water, and someone still holds the tagline for safety. The Dingo never drives over the root mass, but drops soil onto it from outside the planting hole.

Still more water, as the backfilling continues.

Still more water, as the backfilling continues.

Building the well wall, as water continues to flow.

Building the well wall, as water continues to flow.

Six-inch caliper elm tree in its new location.  Some wilt is evident -- likely because the tree was excavated the day before and the roots had been exposed through the course of the several-hours long workshop.

Six-inch caliper elm tree in its new location. Some wilt is evident -- likely because the tree was excavated the day before and the roots had been exposed through the course of the several-hours long workshop. The tagline finally lies slack. Two to four inches of mulch will next be added, and kept away from the trunk.

Demonstrating arborist at this station:

Mike Furgal, Furgal’s Tree and Landscape, Northborough, MA

Air spade tree transplanting

Read Full Post »

Yesterday the Massachusetts Arborists Association held a day-long workshop at Elm Bank, headquarters for the Massachusetts Horticulture Society in Wellesley, MA.  Three arborists — Dave Leonard from Kentucky, Rolf Briggs of Holliston, MA, and Matt Foti of Lexington, MA — spoke about particular  root issues; Mike Furgal, from Northborough, MA, discussed the use of air tools in bare-root tree transplanting.  After hearing the talks, the hundred or so attendees split into groups and visited five stations on the Elm Bank grounds where the featured speakers were giving demonstrations on their topics.

It was a fine workshop, and I’ll be posting quite a few photos from it in the next few days.  Today, though, I’m only posting this photo:

Sugar maple whose root flare was excavated several years ago at a Bartlett Tree workshop given to demonstrate the new and revolutionary use of air tools in tree work.

Sugar maple whose trunk flare was excavated several years ago at a Bartlett Tree workshop given to demonstrate the new and revolutionary use of air tools in tree work.

Several years ago, I went with a friend to this Bartlett Tree workshop at Elm Bank, and we were among a smallish group who watched as an arborist blew several inches of soil away from the trunk flare of this Sugar Maple.  As I recall, the tree had been planted a bit deep, it was set in a fairly compacted lawn, and it was not looking as well as it might; at the time (this was perhaps seven or eight, or perhaps even ten years ago) it had about a six-inch caliper trunk and was not thriving.

Now, however, the tree looks really good.  It may have a little too much mulch around its base — built up since its excavation — but its foliage is deep green, its bark is intact (trunk injuries sometimes show up as a result of some kind of root trauma or injury), and it certainly has grown.  A mulch bed surrounds it and keeps lawnmowers away as it minimizes compaction.  If this kind of growth results from attending to root issues early on and from maintaining a tree properly, the arborists from this workshop may prove, down the road, to be responsible for promoting what truly may be the best arboricultural practices around.

Workshop speakers:

Dave Leonard, Dave Leonard Consulting Arborist, Inc., Lexington, KY

Rolf Briggs, Tree Specialists, Inc., Holliston, MA

Mike Furgal, Furgal’s Tree and Landscape, Northborough, MA

Matt Foti, Matthew R. Foti Landscape and Tree Service, Inc., Lexington, MA

Read Full Post »

This past winter I developed plans for a couple of areas on the property belonging to my longest-standing and wonderfully enthusiastic clients, L. and A. on the North Shore. They have a lovely place on a rocky cliff overlooking Nahant Bay, and they enjoy making it even more beautiful and comfortable each year. They are both artists, and both appreciate art in two and three dimensions: L. gardens and sculpts; A. is a talented photographer.

L. and A. had asked me to figure out how to screen out views of two neighbors from their house, and to develop plans in the two areas that would work with the extensive mature plantings already in place. I drew up plans that would bring a few new plants in, as well as reuse a number of plants already onsite. L. and A. liked the ideas, and we scheduled a date to move ahead.

Leahy Landscaping of Lynn carried out the work of digging and moving the plants; the crew, led by Anibal Marita, was excellent. At my request, and under the supervision of Mark Bolcome, Leahy’s arborist, they used an air spade on the project; we were working in a heavily planted area and I wanted to disturb or lose as few roots as possible.

The plan:  Remove a 32′ long, 7′ high holly (<em>Ilex ‘China Girl'</em>) hedge from the edge of a residential drive court, reusing some of the plants for screening at the front property line, and install a collection of transplanted shrubs, a new Japanese maple, and some low Green Wave yews where the holly had been. Transplant most of the hollies to provide a 22’ long screen at the front property line, and use the rest at another location onsite.

Proposed methods:  Hand-dig the holly. To avoid further stressing the three aging red pines under which some of the hollies were to be transplanted, excavate the transplant site with an air spade. Hand-dig the rest of the plants.

Actual methods:  Hand-dug the holly, then air spaded the root balls to loosen the nursery soil at their cores. Discovered that the wire baskets had not been removed at the original planting, removed those, and loosened the remaining soil, leaving roots intact. Removing the soil allowed the plants to fit in shallower-depth holes, which was helpful on a site with a lot of existing tree roots and drainage pipes. Removing the wire baskets will allow the hollies’ roots (and crowns) to grow unimpeded in their new locations. Excavated under the pines with the air spade, and removed existing shrubs there also with the air spade, leaving all roots, including masses of feeder roots, intact. Unwrapped the Japanese maple root ball, removed the wire basket and burlap, and removed/loosened the soil with the air spade.

Removing a girdling root from the Japanese maple.  Note the root-ball soil line, four inches up the tree's trunk from the base of the trunk flare.

Removing a girdling root from the Japanese maple. Note the root-ball soil line, four inches up the tree's trunk from the base of the trunk flare.

With a mini-claw mattock, pulled soil away from the trunk flare; soil had been piled 4″ up the trunk, concealing a girdling root and the flare itself. Mark Bolcome chiseled away the girdling root and made sure the flare was correctly exposed before laborers backfilled and watered in the root ball.

Removed the red clay soil encasing the nursery root ball of a rhododendron that had been planted onsite several years ago, but that had struggled for those years.

Breaking up the clay soil in the root ball of a 4' rhododendron.

Breaking up the clay soil in the root ball of a 4' rhododendron.

With the concrete-like soil mostly gone, the plant should finally have a chance to spend its energy growing, rather than trying to break through that clay cast.

Cleared ground cover by hand in front of a row of mature Taxus trees,

Holes for holly transplants were dug by air spade, to minimize disturbance to the roots of the treeform yew hedge behind the plywood.

Holes for holly transplants were dug by air spade, to minimize disturbance to the roots of the treeform yew hedge behind the plywood.

then excavated transplant holes with the air spade — again, to keep from disturbing roots of the existing yews — and transplanted more of the holly here.

The original plan, which also included the planting of six large clump bamboos and the moving of several broadleaf evergreen and herbaceous plant, was scheduled to take perhaps two days. The hollies changed everything, though. They were enormous: planted eight or nine years ago at 3′ on center, they opened out to seven to eight feet in width.

One holly, trussed for moving.  Ten of these plants had been placed on 3' centers to make a hedge; when freed from the hedge, each one opened out to cover at least seven feet in breadth.

One holly, trussed for moving. Ten of these plants had been placed on 3' centers to make a hedge; when freed from the hedge, each one opened out to cover at least seven feet in breadth.

There was no way we could fit them all where we had intended; they would have taken up more than seventy linear feet if we had placed them side by side!

Hand-dug holly that has been bare-rooted being prepared for transplant. Notice the clumps of hard, heavy soil from its original root ball lying around it; the wire basket is lying off to the left.

Hand-dug holly that has been bare-rooted being prepared for transplant. Notice the clumps of hard, heavy soil from its original root ball lying around it; the wire basket is lying off to the left.

The trussed holly, now untied and moved to the planting bed, is at the back right of the photo. Liberated from the crush of a too-tight hedge planting, it has opened out to cover almost nine feet of fence.

The trussed holly, now untied and moved to the planting bed, is at the back right of the photo. Liberated from the crush of a too-tight hedge planting, it has opened out to cover almost nine feet of fence.

So it took a while to figure out where to put them, and then more time preparing those new locations to receive them. We ended up placing them — ten from the hedge, plus a shorter male plant — at various points around the property’s edge, where they do a magnificent job of screening out the neighbors.

Accomplishing the work took a full three days. Lessons learned:

1. An air spade is a great tool for any kind of planting work. We tested its capabilities, and found it invaluable for working under trees, for bare-rooting new plants, for excavating existing shrubs, and for removing that dreadful red clay soil from the 4′ rhododendron. We used it to investigate suspicious root issues — that concrete-like slug encasing the rhody’s root mass, the hollies’ wire baskets, the Japanese maple’s buried root flare and girdling root — and when it wasn’t being used on the transplanting operation, we used it to give a little breathing room to the root flare of a river birch planted on site a few years ago.

On this particular site, which has been intensively gardened for decades, the soil is beautifully dark and rock-free. The air spade had no difficulty blowing it out of planting holes. Even with a rockier soil, an air spade has enough pressure (90 psig) that bare-rooting shrubs takes a relatively short time. A laborer team can generally dig a 4-5′ broadleaf evergreen shrub in minutes. An air spade can do it as quickly or in a few more minutes, depending on soil type — but the amount of root mass saved makes the air spade by far the preferred method, horticulturally.

2. Plywood screens work beautifully to confine the overspray of soil from the spading site. For bare-rooting the already-dug hollies, the landscapers figured out that they could lift each plant into the back of their high-sided truck and spade off the root soil there, which kept the soil contained and the site clean.

3. At a minimum, workers using the air spade or helping with the bare-rooting should wear goggles and a face mask; very fine particles of soil spray everywhere at high pressure, and eyes and lungs should be protected. In rocky or sandy soil, the hazard is greater, and long sleeves and protective visored helmets are a good idea.

4. Never plant China Girl hollies that close together. They have a lush and luxuriant round form, and are determined to grow to that form (shrubs will push to grow into their particular habits — with some, you can push back by hedging them, but it makes sense to pick a variety whose natural habit lends itself to hedge form). Ten hollies had been planted at 3\’ o.c. to make a hedge; when removed from hedge configuration, the plants spread to between seven and nine feet in breadth. These plants now make a contribution to the landscape that they couldn’t in hedge form.

L. couldn’t remember if the original plan, done by another LA, had called for China Girls or for some other holly, and wondered if the contractor might have substituted China Girls for something else. We’ll never know — but we’ll know what to avoid in future.

Conclusion: The planting techniques were first-rate, the plants looked happy, the place looked great. L. and A. are delighted with the results (I know I’ve succeeded when I’ve pleased their artists’ eyes), and Leahy is moving on to do other air spade projects, knowing how well the technique works in a number of different situations. Now we’ll all be watching to see how everything grows; I’m betting they will all thrive.

Company:  Leahy Landscaping of Lynn, MA

Leahy Project Manager: Aisha Lord

Leahy Arborist: Mark Bolcome, MCA

Leahy Foreman: Anibal Marita

Read Full Post »

« Newer Posts