Feeds:
Posts
Comments

Posts Tagged ‘MAA’

At the MAA Elm Bank workshop on September 10, 2009, Matt Foti demonstrated how to address root problems at the time of planting.  He had a fairly large collection of trunk-and-root masses to illustrate his points, and used them to show how girdling roots, secondary root systems, and J-rooted systems can develop as a result of poor planting or growing practices.

Matt first showed a couple of forest saplings he had pulled early in the day to illustrate how a naturally-seeded tree’s roots grow.  The sapling’s roots were evenly spaced around its stem, and extended out a distance relatively equivalent to the distance its topgrowth extended from the stem.

This little forest-grown white pine has a clean, evenly spaced root system.

This little forest-grown white pine has a clean, evenly spaced root system.

He then pointed to a couple of nursery-grown trees whose rooting problems had become evident after several years.

These root systems have been cut in the digging process.  In an attempt to regrow roots, the foreground tree has sent out a secondary root system, several of which are beginning to girdle other roots.  Kept too long in a burlapped ball or in a container, roots will often turn back in to the ball, making effective planting and long-term growth problematic.

These root systems have been cut in the digging process. In an attempt to regrow roots, the foreground tree has sent out a secondary root system, several of which are beginning to girdle other roots. Kept too long in a burlapped ball or in a container, roots will often turn back in to the ball, making effective planting and long-term growth problematic.

Shrubs as well as trees are susceptible to root problems; Matt dismantled an Ilex verticillata root mass to illustrate how he treats roots bound in a container or in burlap before planting.

Fibrous roots hold together in a near solid mass right out of the container.

Fibrous roots hold together in a near solid mass right out of the container.

Using a three-pronged fork to untangle the root mass.  For a bigger shrub or small tree, a machete or pitchfork may work well to loosen soil and reorient roots.

Using a three-pronged fork to untangle the root mass. For a bigger shrub or small tree, a machete or pitchfork may work well to loosen soil and reorient roots.

Ilex verticillata root mass, now ready for planting.

Ilex verticillata root mass, now ready for planting.

Soil can present another problem for nursery-dug B&B trees.  Clay soils make sturdy root balls, which can be useful for shipping, but not so great for root growth.

This pair of trees have root masses encased in rock-hard clay soils.  Note the solid clumps of clay in the foreground, and root growth only on top of the root ball -- these roots found it impossible to grow into and through this soil.  Breaking up the soil in a root ball like this before planting promotes the tree's future health; leaving this kind of root ball intact almost guarantees tree stress and decline.

This pair of trees have root masses encased in rock-hard clay soils. Note the solid clumps of clay in the foreground, and root growth only on top of the root ball -- these roots found it impossible to grow into and through this soil. Breaking up the soil in a root ball like this before planting promotes the tree's future health; leaving this kind of root ball intact almost guarantees tree stress and decline.

Closeup of rock-hard clay root ball, broken apart (fairly violently) for demonstration purposes.

Closeup of rock-hard clay root ball, broken apart (fairly violently) for demonstration purposes.

Another example of a dense clay root ball that constricted root growth to the tree's great detriment.  Soil had also been piled up around this tree's trunk flare, further challenging its ability to live.  Tough conditions for a tree to grow in.

Another example of a dense clay root ball that constricted root growth to the tree's great detriment. Soil had also been piled up around this tree's trunk flare, further challenging its ability to live. Tough conditions for a tree to grow in...

The point of these illustrations was to show how necessary it is, when planting a tree or shrub, to work with the root ball before covering it with soil.  Removing wire baskets, removing burlap, loosening or removing the soil, untangling roots as best as possible, pruning roots when necessary — all these tactics make up a strategy for promoting real tree growth.  Bare-root techniques have shown that a great deal of the work that arborists do these days is remedial — that is, is work intended to remedy poor growing, digging, or planting practices.  With the knowledge arborists now have of how root issues so obviously affect plant health, it only makes sense to attend to those issues early on, to avoid greater problems later.

Demonstrating arborist at this station:

Matt Foti, Matthew R. Foti Landscape and Tree Service, Inc., Lexington, MA

Advertisements

Read Full Post »

Tree Specialists manned the decompaction station at the MAA workshop on September 10, 2009.  Standing between two mature sugar maple trees, Rolf Briggs used a compaction meter (from Forestry Suppliers, Inc.) to show how thoroughly compacted the soil around these trees was (very).

Again, the arborists set up barriers to limit the area affected by blown-out soil and pebbles.  Rolf Briggs (right foreground) showed how to use a compaction meter, and explained that the green flags delineate the area to be decompacted.  Flagging the area for review by the client makes the limit of work clear to all parties.

Again, the arborists set up barriers to limit the area affected by blown-out soil and pebbles. Rolf Briggs (right foreground) showed how to use a compaction meter, and explained that the green flags delineate the area to be decompacted. Flagging the area for review by the client makes the limit of work clear to all parties.

Compaction limits the movement of moisture and of gases (oxygen included) in soils, and so can create significant problems for trees.  Trees rely on water being available to their roots, and on the ready intake of oxygen (from the air and from water molecules) for carbon dioxide discharged by those roots.  Compacted soils tend not to allow oxygen in in sufficient quantities, nor allow the steady release of carbon dioxide that a tree needs.  Breaking up the compaction, adding organic amendments to improve soil structure, and replacing lawn areas around trees with mulch beds are steps that benefit soil health, and as a result, tree health.

Decompacting soil around two sugar maple trees.  One man operates the air tool, blowing vertical trenches and mixing their backfill with a proprietary organic soil amendment that mimics forest duff.  The other operator mans the air hose, and tugs on it to signal to the operator.  Air tools are loud!.  Green flags indicate limits of the decompaction zone.

Decompacting soil around two sugar maple trees. One man operates the air tool, blowing vertical trenches and mixing their backfill with a proprietary organic soil amendment that mimics forest duff. The other operator mans the air hose, and tugs on it to signal to the operator. Air tools are loud!. Green flags indicate limits of the decompaction zone.

Tree Specialists prewaters the work area 24-48 hours before starting on a decompaction project, to hydrate the roots and help keep dust down.  As they proceed with the process, they begin to ‘fold in’ amendments.

For further information on decompaction, Briggs recommended an article in the current issue (September 2009) of Tree Care Industry Magazine on soil decompaction and amendment.

Demonstrating arborists at this station:

Tree Specialists, Inc.,  Holliston, MA

Read Full Post »

Here’s a quick post to alert readers to the Massachusetts Arborists Association‘s Special Seminar and Demonstration on air tool use. A team of four arborists — Mike Furgal, Matt Foti, Rolf Briggs, and Dave Leonard — will be showing how compressed-air tools can be used in arboricultural work (root forensics, bare-root planting, bare-root transplanting, shrub moving, etc.), and will discuss the advancements that this technology provide those working with or using woody plants in the landscape.

The seminar will be on September 10 at Elm Bank, the Massachusetts Horticultural Society’s property in Wellesley, MA — check the MAA link above for registration information.

Registration is not limited to arborists, so interested landscape architects and contractors can go and see this work. I highly recommend signing up; last year’s seminar at Matt Foti’s farm, where Mike Furgal debuted the air-tool transplanting method, was really outstanding, and this year there’s bound to be even more information available and a great deal of informed and informative discussion.

One point: Bare-root transplanting, either with an air-tool or by root-washing, may never replace other methods of transplanting. But for specimen tree transplanting, where the value of an existing tree merits the effort involved, it is currently the gold standard. The number of roots retained with bare-root transplanting prevents the tremendous stress caused by other methods, and should be considered a valuable tool in the kit available to landscape architects, arborists, and contractors.

Bare-rooting allows for the moving of a tree this large in less than one day...

Bare-rooting allows for the moving of a tree this large in less than one day...

...while preserving this much root mass.

...while preserving this much root mass.

Read Full Post »

« Newer Posts