Feeds:
Posts
Comments

Archive for the ‘Uncategorized’ Category

At the MAA Elm Bank workshop on September 10, 2009, Matt Foti demonstrated how to address root problems at the time of planting.  He had a fairly large collection of trunk-and-root masses to illustrate his points, and used them to show how girdling roots, secondary root systems, and J-rooted systems can develop as a result of poor planting or growing practices.

Matt first showed a couple of forest saplings he had pulled early in the day to illustrate how a naturally-seeded tree’s roots grow.  The sapling’s roots were evenly spaced around its stem, and extended out a distance relatively equivalent to the distance its topgrowth extended from the stem.

This little forest-grown white pine has a clean, evenly spaced root system.

This little forest-grown white pine has a clean, evenly spaced root system.

He then pointed to a couple of nursery-grown trees whose rooting problems had become evident after several years.

These root systems have been cut in the digging process.  In an attempt to regrow roots, the foreground tree has sent out a secondary root system, several of which are beginning to girdle other roots.  Kept too long in a burlapped ball or in a container, roots will often turn back in to the ball, making effective planting and long-term growth problematic.

These root systems have been cut in the digging process. In an attempt to regrow roots, the foreground tree has sent out a secondary root system, several of which are beginning to girdle other roots. Kept too long in a burlapped ball or in a container, roots will often turn back in to the ball, making effective planting and long-term growth problematic.

Shrubs as well as trees are susceptible to root problems; Matt dismantled an Ilex verticillata root mass to illustrate how he treats roots bound in a container or in burlap before planting.

Fibrous roots hold together in a near solid mass right out of the container.

Fibrous roots hold together in a near solid mass right out of the container.

Using a three-pronged fork to untangle the root mass.  For a bigger shrub or small tree, a machete or pitchfork may work well to loosen soil and reorient roots.

Using a three-pronged fork to untangle the root mass. For a bigger shrub or small tree, a machete or pitchfork may work well to loosen soil and reorient roots.

Ilex verticillata root mass, now ready for planting.

Ilex verticillata root mass, now ready for planting.

Soil can present another problem for nursery-dug B&B trees.  Clay soils make sturdy root balls, which can be useful for shipping, but not so great for root growth.

This pair of trees have root masses encased in rock-hard clay soils.  Note the solid clumps of clay in the foreground, and root growth only on top of the root ball -- these roots found it impossible to grow into and through this soil.  Breaking up the soil in a root ball like this before planting promotes the tree's future health; leaving this kind of root ball intact almost guarantees tree stress and decline.

This pair of trees have root masses encased in rock-hard clay soils. Note the solid clumps of clay in the foreground, and root growth only on top of the root ball -- these roots found it impossible to grow into and through this soil. Breaking up the soil in a root ball like this before planting promotes the tree's future health; leaving this kind of root ball intact almost guarantees tree stress and decline.

Closeup of rock-hard clay root ball, broken apart (fairly violently) for demonstration purposes.

Closeup of rock-hard clay root ball, broken apart (fairly violently) for demonstration purposes.

Another example of a dense clay root ball that constricted root growth to the tree's great detriment.  Soil had also been piled up around this tree's trunk flare, further challenging its ability to live.  Tough conditions for a tree to grow in.

Another example of a dense clay root ball that constricted root growth to the tree's great detriment. Soil had also been piled up around this tree's trunk flare, further challenging its ability to live. Tough conditions for a tree to grow in...

The point of these illustrations was to show how necessary it is, when planting a tree or shrub, to work with the root ball before covering it with soil.  Removing wire baskets, removing burlap, loosening or removing the soil, untangling roots as best as possible, pruning roots when necessary — all these tactics make up a strategy for promoting real tree growth.  Bare-root techniques have shown that a great deal of the work that arborists do these days is remedial — that is, is work intended to remedy poor growing, digging, or planting practices.  With the knowledge arborists now have of how root issues so obviously affect plant health, it only makes sense to attend to those issues early on, to avoid greater problems later.

Demonstrating arborist at this station:

Matt Foti, Matthew R. Foti Landscape and Tree Service, Inc., Lexington, MA

Advertisements

Read Full Post »

The Massachusetts Arborists Association workshop on September 10, 2009, took place on a sunny, cool day at the Mass. Hort. Society’s headquarters at Elm Bank in Wellesley, MA.

Quite a few arborists and other landscape professionals attended the workshop, which began with slide talks and then moved outside to field demonstrations.

Quite a few arborists and other landscape professionals attended the workshop, which began with slide talks and then moved outside to field demonstrations.

This workshop focused on root issues, with demonstrations of what some of those issues are — conflicts with utility lines, the effects of poor growing and planting practices, decline due to compacted and poor soils, and inappropriate tree locations — and how they may be remedied.

Rolf Briggs and Tree Specialists set up shop at a couple of different stations to show how they use air tools both to decompact soils and to excavate utility trenches near trees.  The demonstrating arborists first discussed protective equipment, and showed what  they use when they employ air tools:  We watched as they put on respirators, helmets with face masks, ear protection, gloves, and either foul weather gear or jumpsuits — all necessary to protect from the great quantities of dust, soil, and stones blowing into the air.

To protect the surrounding area from flying detritus, Mike Hickman of Tree Specialists set up plywood or screen barriers around his work zone.  I’ve seen plain plywood sheets used; the Tree Specialist guys have figured out that hinging several sheets together makes for a sturdier barrier, a good thing if you’re using air tools with any regularity in anything but a wide-open landscape.

Hinged plywood panels keep the dust contained to the area around a trench.

Hinged plywood panels keep the dust contained to the area around a trench.

When it's necessary to dig a trench near a tree, air tools can do the job while preserving the tree's roots.  You can see roots crossing this trench, but plenty of space beneath them for a new conduit or line.  This trench was blown out with an air spade, and rocks and excess loose material after the blowing-out removed by hand.

When it's necessary to dig a trench near a tree, air tools can do the job while preserving the tree's roots. You can see roots crossing this trench, but plenty of space beneath them for a new conduit or line. This trench was blown out with an air spade, and rocks and excess loose material after the blowing-out removed by hand.

The power of compressed air will break up soil move it out of the way; it can also damage roots to some extent, by blowing root bark or feeder roots entirely away.  When using an air tool, experienced operators keep the nozzle moving to limit this kind of damage, and whenever possible (definitely not always possible in trenching work), they direct the air flow parallel to the direction of major root growth, away from the base of the tree.

Note the plywood barrier inside the trench as well, to focus the air blast and prevent soil from blowing into a previously blown-out section.

Note the plywood barrier inside the trench as well, to focus the air blast and prevent soil from blowing into a previously blown-out section.

Blowing out the trench.  This air tool is a new product that uses an auxiliary stream of water to help keep the roots hydrated and the dust down.  Tree Specialists is assessing this new feature.

Blowing out the trench. This air tool is a new product that uses an auxiliary stream of water to help keep the roots hydrated and the dust down. Tree Specialists is assessing this new feature.

After blowing out a utility trench, Tree Specialists simply returns the native soil to the excavated area.  They may add some amendments such as lime or humates, if they have already had soil tests done that indicate the need for such amendments.  And to mulch the area once excavation and backfilling are complete, they have developed a proprietary mix of chipped and composted wood fibers (mainly from tree parts 3″ and less in diameter), twigs, and leaves.  They use this same mix in their soil decompaction process, and note benefits to the trees from its use.

Mike Hickman pointed out that air tools break down soil aggregates and so obliterate soil structure in the area blown out.  This breakdown can be considered a disadvantage of using compressed air for excavation; in Mike’s words, “Destruction of some of the soil aggregates I see as a “con,” but proper horticultural practices such as mulching and site specific amendments effectively mitigate these cons.”

Demonstrating arborist at this station:

Mike Hickman, Tree Specialists, Inc., Holliston, MA

Read Full Post »

The project showcased in the last post continued this week, with the bare-root transplanting of five London Plane trees (Platanus x acerifolia) and a mature crabapple. Again, Matthew R. Foti Landscape and Tree Service was the prime arborist on this site in a Boston suburb — but this week the Foti crew was joined by Mike Furgal, who was the first arborist to use the air tool for bare-rooting trees in this way.

Mike has been doing this work a bit over five years, and his expertise was the basis for the bare-root workshop sponsored by the Massachusetts Arborists Association and hosted by Matt last August.   Still, neither arborist had moved this many trees of this size — the London Planes ranged from 11 inches dbh to 13″ dbh — and in teaming up they brought all their knowledge to bear to the challenges of this particular project. (The homeowner figured she had hired the A team, given the pair’s depth of knowledge and breadth of experience.)

I took a lot of photos during the first day, and returned today to shoot more. My colleague Bruce Jones and I also shot extensive videotape of the process, which is currently in editing, and will explain the sequence of bare-root transplanting using compressed air — watch this blog for word that it’s done and available.

To avoid computer-use burnout (mine), I’m posting one batch of photos today, and will add another post with more in a few days. I promise, this first batch of images will be plenty to digest for a while….

The site before the five London Planes get moved. The first tree to be excavated and moved is the one furthest from the camera, just to the right of the white trailer. These trees flanked a driveway; in this photo the driveway asphalt has been taken up and the gravel base has been partially removed. Trees are located 3-4 feet from the drive edge.

The site before the five London Planes get moved. The first tree to be excavated and moved is the one furthest from the camera, just to the right of the white trailer. These trees flanked a driveway; in this photo the driveway asphalt has been taken up and the gravel base has been partially removed. Trees are located 3-4 feet from the drive edge.

The mini excavator has dug a partial trench; the trench must be dug in sections, or it would be too difficult to reach in and haul out the blown soil.  A climber is in the tree, tying in lines to be used later during transport.

The mini excavator has dug a partial trench; the trench must be dug in sections, or it would be too difficult to reach in and haul out the blown soil. A climber is in the tree, tying in lines to be used later during transport.

Bare-rooting has begun, and one pigtail of roots is already tied to the tree's trunk.  The tree did not extend any roots into the gravel driveway base, so it only has 3-4 feet of root mass on that side.  It did extend its roots out parallel to the driveway, and radially out into the lawn.  A good depth of soil also let it sink its roots quite deep --  2-3 feet -- into the ground.  Mike Furgal is in the green jumpsuit and facemask.

Bare-rooting has begun, and one pigtail of roots is already tied to the tree's trunk. The tree did not extend any roots into the gravel driveway base, so it only has 3-4 feet of root mass on that side. It did extend its roots out parallel to the driveway, and radially out into the lawn. A good depth of soil also let it sink its roots quite deep -- 2-3 feet -- into the ground. Mike Furgal is in the green jumpsuit and facemask.

Pigtailed roots, and short roots along the driveway edge.

Pigtailed roots, and short roots along the driveway edge.

Good deep soil, good deep roots -- everywhere but at the gravel.

Good deep soil, good deep roots -- everywhere but at the gravel.

Lots of activity at the tree:  two air-tool excavators, an mini excavator digging the trench, a Bobcat taking soil away, and Matt Foti assessing progress.

Lots of activity at the tree: two air-tool excavators, an mini excavator digging the trench, a Bobcat taking soil away, and Matt Foti assessing progress.

Blowing out soil, getting closer to the move.

Blowing out soil, getting closer to the move.

Padding the trunk with layers of burlap for the move.

Padding the trunk with layers of burlap for the move.

Giant forks have been run under the tree, and the loader is getting ready to lift it. Four taglines are visible in this shot; they won't prevent the tree from falling, but help indicate how it is balanced during the move.

Giant forks have been run under the tree, and the loader is getting ready to lift it. Four taglines are visible in this shot; they won't prevent the tree from falling, but help indicate how it is balanced during the move.

Lifting and backing, slowly and very carefully.

Lifting and backing, slowly and very carefully.

A pause for the forks to be positioned more firmly.

A pause for the forks to be positioned more firmly.

Big machine, bigger tree. The root plate on this tree extended about 18 feet across at its maximum width. Transporting a large, upright live tree is a slow-speed operation.

Big machine, bigger tree. The root plate on this tree extended about 18 feet across at its maximum width. Transporting a large, upright live tree is a slow-speed operation.

Compare this root plate to that of a B&B tree, or a tree-spaded one (though this tree is too large for a tree spade), and it's clear what an advance this technology promises to be in benefiting the health of trees to be transplanted. The tree's energy reserves are largely stored in the roots; save the roots, reduce stress on the tree, and speed re-establishment after planting.

Compare this root plate to that of a B&B tree, or a tree-spaded one (though this tree is too large for a tree spade), and it's clear what an advance this technology promises to be in benefiting the health of trees to be transplanted. The tree's energy reserves are largely stored in the roots; save the roots, reduce stress on the tree, and speed re-establishment after planting.

The tree, post-planting. The arborists assessed how deep the root mass was and how it was formed, and dug the planting hole to accommodate, roughly, its form. Once the tree is placed in the hole, the roots are spread out radially by hand, and loam shovelled in around, under, and over them. Watering starts during the digging process, once the tree has been levelled, so that a loam slurry anchors the root plate and tree to its new site. A well is formed to retain moisture and more water is added.

The tree, post-planting. The arborists assessed how deep the root mass was and how it was formed, and dug the planting hole to accommodate, roughly, its form. Once the tree is placed in the hole, the roots are spread out radially by hand, and loam shovelled in around, under, and over them. Watering starts during the digging process, once the tree has been levelled, so that a loam slurry anchors the root plate and tree to its new site. A well is formed to retain moisture and more water is added.

Two to four inches of mulch is added around the tree, and kept away from the trunk.

Two to four inches of mulch is added around the tree, and kept away from the trunk.


Minor pruning to fix a lamppost-branch conflict.

Minor pruning to fix a lamppost-branch conflict.

The transplanted tree seven hours later, in its new home.

The transplanted tree seven hours later, in its new home.

Matthew R. Foti Landscape and Tree Service, Lexington, MA – lead arborist

Furgal Tree and Landscape, Northborough, MA – consulting arborist

Robert Hanss Inc. Landscape Construction – landscape contractor

Reed Hilderbrand – landscape architects (Chris Moyles, project manager)

Read Full Post »

p1010402

No, that’s not a shot of a revolutionary way of planting in pavement — that’s a photo of one of the enormous China Girl hollies being taken to its new home at the property belonging to L. and A., my longtime clients. This holly is a mature plant; in my Air Spade In Action post (May 16), you can see it set on the ground, opened to its full, voluptuous 9′ width.

You’ll also notice that shrubs flanking the steps and walk here are mostly mature plants. L. and A. have spent years developing their landscape, and it has the flavor of a place owned by art appreciators. The plants have been tended with care, diligence, and skill, and their character reinforces the design intentions evident throughout the gardens.

Landscape architects often heed Frederick Law Olmsted’s dictum, “Plant thick, thin quick” (a motto we learned in Lenny Mirin’s Landscape History class at Cornell — Lenny?), and plant shrubs more densely than the mature size of the plant might dictate. Clients often want to see immediately gratifying plantings, which means a minimal view of the mulch and a maximal view of plants.

Which is fine — as long as someone goes back in a few years later and actually does the thinning. The making of a landscape is not a one-off deal.

At the North Shore garden this past week, as we were in the midst of reworking two areas on the property, I had a revelation. My clients have been devoted to their gardens for years, and they enjoy and promote the evolution of their place. Their enthusiasm for their landscape has allowed me to make the refinements that continue to animate it.

Thinning out the plantings is one aspect of this work: dismantling the holly hedge gave us ten wonderful plants to use around the property, while allowing us to develop a planting in place of the hedge that uses a combination of new, younger plants and older transplants that have grown into their habits. Toby and I have discussed in earlier posts the idea of planting densely and allowing the plants themselves to elbow each other both into a coherent ensemble and into a set of individual character actors.

This week, I was able to take mature, idiosyncratic plants — in this case, rhododendrons, azaleas, and mountain laurel — and transplant them in an area where each plant’s form would be visible. This sort of refinement is possible when a landscape has been designed, planted, and growing for years; it is the stage at which the character of plants can truly be showcased.

Not every landscape reaches this stage, which requires something of the eye of an editor and a knowledge of horticulture in addition to the skills of a designer. A property may be sold, a client may find other priorities, or may simply feel overwhelmed by the “planted thick” place. Rather than thin it out or make new spaces in the landscape, that client or new owner may ask for an entirely new planting.

Refining a landscape by reimagining its plantings, though, and in some cases developing new spaces to fit a changed use of the property, can breathe new and vigorous life into a place. Mature plants, well-situated, give a well-structured place the look of inevitability that is difficult to achieve with the callow youth of new nursery-grown stock.

Some of my favorite work has involved shaping spaces with mature plants reused from the same site. I tend to see character in plants, and really like gussying them up to highlight that character. Putting together a collection of plants in this way is like developing the singing skills of a choir; individually, each singer’s voice is distinctive, and together, all the voices blend to create shifting and satisfying harmonies.

This kind of design starts with a plan, but requires an agile mind onsite, as the plants move from one situation to another, and relationships among their forms change. It’s challenging to see a plant from all sides, envision how it will work in harmony with the others to join it, be sure it works horticulturally, and assemble the collection to best effect.

There is no way to plan precisely that kind of work in advance; the joy of it comes when shifts, tweaks, and adjustments bring about a result that fits just right, and that pleases. This week, I got to spend three days of orchestrating this kind of work, and every minute was a pleasure. Here are before and after photos of one planting area we changed:

p1010537Same area, newly revised. The existing trees remain, and we’ve added another little Bloodgood. The great wall of China Girls is gone, we moved two of them back in front of the Norway maple to grow more loosely together as a backdrop to two mature azaleas. Older rhododendrons and mountain laurel show their forms to the left of the new Bloodgood. New Green Wave yews will grow together and in a few years will make a continuous loose line with the existing Green Waves.

Read Full Post »

« Newer Posts